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SINOPSE
A evolução das diversas maturidades das taxas de juros está relacionada e pode ser
descrita por um número reduzido de variáveis latentes comuns. Os modelos de taxas
de juros multivariados da literatura de finanças utilizam esta propriedade, assim como
os modelos de fator comum da literatura de séries temporais, e modelos de
decomposição da curva de juros. Cada um desses modelos tem vantagens e
desvantagens, sendo uma questão empírica avaliar o desempenho dessas abordagens.
Esse exercício compara a resposta de quatro modelos alternativos para a curva de
juros, em três mercados diferentes: juros domésticos brasileiros, juros soberanos
externos brasileiros, e juros domésticos dos Estados Unidos.

ABSTRACT
The evolution of the yields of different maturities is related and can be described by a
reduced number of commom latent factors. Multifactor interest rate models of the
finance literature, common factor models of the time series literature and others use
this property. Each model has advantages and disadvantages, and it is an empirical
matter to evaluate the performance of the approaches. This exercise compares 4
alternative models for the term structure using 3 different markets: the Brazilian
domestic and sovereign market and the US market.
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Abstract

The evolution of the yields of different maturities are related and can
be described by a reduced number of commom latent factors. Multifactor
interest rate models of the finance literature, common factor models of
the time series literature and others use this property. Each model has
advantages and disadvantages, and it is an empirical matter to evaluate
the performance of the approaches. This exercise compares 4 alternative
models for the term structure using 3 different markets: the Brazilian
domestic and sovereign market and the US market.

1 Introduction
Studies after Litterman and Scheinkman (1991) documented that the evolution
of the yield curve could be represented by the path of up to 3 latent factors which
summarize the yield curve and somehow represent the state of the economy. The
intertemporal dependence among the factors describe in a parsimonious way the
movements of the yield curve. The yields are given by weighted sums of the state
factors. This summarizes the multifactor interest rate models.
The weights can be specified according to approaches that solely emphasize

the adherence to data, or that contain no arbitrage restrictions, or which specify
a certain shape for the yield curve. Each of the approaches pertain to a different
literature. The one that only takes into account the fitting is the common factor
model (CF), a standard model in the multivariate time series literature (Harvey,
1989, West and Harrisson, 1997). One of the many models imposing no arbitrage
restrictions is the affine model (NA) of Duffie and Kan (1996). Others assume
that the yield curve can be described with components with a given shape, for
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example using 1) Legendre Polynomials, Almeida (1998, LP) or 2) the functions
proposed by Nelson and Siegel (1987, NS).
Those models possess different characteristics. The NS and LP have less

parameters to be estimated, but impose shape restrictions that may not be
realistic, and require a number of factors to represent the yield curve that may
not be compatible to the number of stochastic sources. The NA model uses
a particular rule for the fluctuation of the risk premium and short rate - they
are linearly dependent of the state variables -, is more flexible with respect to
the format of the curve, has less parameters that have to be estimated than
CF model, but some of its parameters, those of the premia, introduce nonlinear
characteristics that make it more difficult to estimate. Finally, the CF model
is more flexible than the previous ones, easier to estimate, but contains much
more parameters. However, this may not be an important deficiency in case the
available data has daily frequency.
The model that imposes no arbitrage restrictions is conceptually superior to

a purely functional model. It has less scope than a general equilibrium model,
but uses less restrictive hypothesis and is more numerically tractable. However,
the affine characterization of the model comes from assumptions on the format
of the short rate and of the risk premium that may not fit for the Brazilian
market, which, until recently, was too concentrated on the short end of the
curve. Besides, it is only empirically that it will be possible to verify if the local
market is sufficiently ample and liquid to guarantee no arbitrage or if the premia
is affine with the state variables.
All the models assumed that the evolution of the yield curve can be described

with a reduced number - up to 3 - of latent variables. The CF model is a
descriptive representation of the yield curve and can adjust with more flexibility
the empirical particularities of the yield curve. Hence it will be used as the
benchmark model.
Each model has advantages and disadvantages. It is an empirical matter

to evaluate which one has the best forecasting performance. To this end, 3
yield curves will be analyzed: 1) the Brazilian domestic market, given by the
Brazilian Futures (BM&F) DIxPRE swaps, 2) FED’s constant maturity zero-
coupon rates extracted from US treasury bonds, and 3) Bloomberg’s Brazilian
sovereign constant maturity zero-coupon rates extracted from Republic bonds
and Brady bonds.
The models were estimated using Monte Carlo Markov Chain - a Bayesian

approach (see Gamerman, 1997, and Johannes and Polson, 2003). It constructs
samples of the distributions of the estimators and of associated statistics, which
permit the construction of performance criteria which take into account the joint
effect of the estimator’s uncertainty.
The focus of this text is to compare the model’s capacity to explain and

forecast the yield curve, observing that each one has a different number of pa-
rameters. This will be achieved by using 3 largely used criteria: 1) Posterior
predictive loss, Gelfand and Ghosh (1998), Banerjee et al (2004), 2) DIC, a
generalization of the AIC proposed by Spiegelhalter et al (2002), and 3) a mea-
sure proposed by Theil which provides a direct indication of the relevance of
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the model for forecasting. The next sections present the models, the method of
estimation and the obtained results. The last one concludes.

2 Term Structure Models
Let Y be the vector of the n selected interest rate yields, θ the vector of the
p < n latent monetary factors that describes the economy. It is assumed that
the path of Y is given by the sum of the effect of the state variables, Bθ, and
of independent errors u. The monetary factors follow a multivariate mean-
reverting process with correlated innovations. The weights B price bonds of
different maturities with respect to the instantaneous interest rate r, which is
the first component of the vector Y . The criterion used to obtain the weights
determines the models. Thus,

Yt = A(.) +B(.)θt + σet, et ∼ N(0, In), (1)

θt = µ+ φθt−1 +Σut, ut ∼ N(0, Ip). (2)

2.1 Common Factor Model

The model (1, 2) is estimated with unrestricted A and B.

Yt = A+Bθt + σet, et ∼ N(0, In) (3)

θt = µ+ φθt−1 + Σut, ut ∼ N(0, Ip) (4)

The model as shown is sub-identified. Any nonsingular matrix L applied to
the state factors θ will transform it to an equivalent model. Thus, the monetary
factors are undetermined. It can be identified in many ways. Here, we adopt the
same identification as proposed by Dai and Singleton (2000) for affine models,
which consists of E(θ) = 0, V (θ) = I, upper triangular φ.

2.2 Modified Legendre Model

At each moment, the yield curve can be seen as a function that relates an in-
terest rate to a maturity. This function changes along the time. The Legendre
polynomials constitute a base for the space of functions, and the variation of the
curves is represented by the alteration of the relative importance of the compo-
nents of the base. Almeida et al (1998) used this representation to describe the
evolution of the yield curve at each instant. Incorporating to this construction
an equation for the transition of the components, we have a specification for
the model (1), (2) where the matrix of weights B are components of Legendre
polynomials. It is denoted as (LP). More specifically:

ynt = θ1t + θ2tx+ θ3t(3x
2 − 1)/2 + θ4t(5x

2 − 3x)/2 + ent , or (5)

ynt = θ1t +B2nθ2t +B3nθ3t +B4nθ4t + ent, (6)
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x = 2n/n∗ − 1, where n∗ is the greatest maturity. (7)

In this construction, the first component describes the level of the rates, the
second describes the inclination, and the third the curvature. The changes of
yield curve are described by up to 4 stochastic components. Empirical evaluation
will indicate the relative importance of the components and the number of latent
factors necessary to represent the yield curve in each market.

2.3 Modified Diebold and Li Model

Another well know model of the yield curve is Nelson and Siegel (1987). This
decomposition was used by Diebold and Li (2005), testing its forecasting per-
formance on government bonds. Incorporating a transition equation, we obtain
the third model:

ynt = θ1t +

µ
1− e−λn

λn

¶
θ2t +

µ
1− e−λn

λn
− e−λn

¶
θ3t + ent , or (8)

ynt = θ1t +B2n(λ)θ2t +B3n(λ)θ3t + ent. (9)

As before, the components describe geometric properties of the curve, this time
with 3 components. Again, only empirically it is possible to evaluate the impor-
tance of the components and the compatibility between the number of stochastic
sources and the number of components that must be used to describe the yield
curve.

2.4 Affine No Arbitrage Model

The weights of the matrix B determine the relation between the yields of the
different maturities and the short rate. The condition that there is no arbitrage
at each instant among the rates implies in restrictions on the components of the
matrix B. In particular, in the affine model, the risk premia λt and the short
rate rt are linearly dependent on the state variables θt.
Following Ang and Piazzesi (2003), we derive the pricing equation. The price

at time t of an asset Vt that pays no dividend is

Vt = EQ[exp(−rt)Vt+1|Ft]. (10)

Under no arbitrage, there exists a martingale measure Q ∼ P, the objective
measure, and Ft is the filtration. The short rate and the risk premium are affine
functions of the state vectorXt ∈ Rp, that is, rt = δ0+δ1Xt and λt = λ0+λ1Xt,
where the dynamics of the state vector is a multifactor vector autoregression

Xt = µ+ φXt−1 +Σ�t. (11)

Note that using a time-varying risk premium improves the adherence to data.
Denote by ξt the Radon-Nikodym derivative

dQ
dP = ξt. A discrete time “version”

of Girsanov theorem is assumed setting ξt+1 = ξt exp(−12λt · λt − λt�t+1),
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where {�t} are independent normal errors. Then, the Pricing Kernel is mt =

exp(−rt) ξt+1ξt
, so that the price of a zero-coupon bond maturing n+1 periods

ahead is pn+1t = E[mt+1p
n
t+1]. Using induction, it can be seen that the price of

bond will be exponential affine:

pnt = exp(αn + βnXt), (12)

where:
α1 = −δ0, β1 = −δ1,

αn+1 = −δ0 + αn + (µ
| − λ|0Σ)βn +

1
2β

|
nΣ

|Σβn,
βn+1 = −δ1 + (φ− λ|1Σ)βn.

(13)

Then Y n
t = − log pnt /n = An+BnXt, whereAn = −αn/n andBn = −βn/n.Thus,

ynt = An +BnXt, (14)

where An and Bn depend on parameters Ψ = (δ0, δ1, µ, φ, σ, µ
∗, φ∗,Σ), where

µ∗ = µ− Σλ0 and φ∗ = φ− λ|1Σ.
Here as in the CF model, the matrix B is estimated, which means that it

must be identified. We use the same identifying restrictions as Dai and Singleton
(2000).

3 Inference
The last section showed that the models only differ in the specification of the
matrices A,B which relates the yield curve to the latent factors. In general, the
model can be defined as

Yt = A(Ψ) +B(Ψ)θt + σet, et ∼ N(0, In) (15)

θt = µ+ φθt−1 + Σut, ut ∼ N(0, Ip) (16)

where Ψ = (µ, φ, σ, ζ, θ) and the definition of ζ depend on the model and is
summarized below.

CF LP NS NA
ζ = (A,B) ζ is empty ζ = λ ζ = (δ0, δ1, µ

∗, φ∗,Σ)

The likelihood L(Ψ) = p(Y |Ψ) = p(Y |θ,Ψ)p(θ|Ψ)p(Ψ), where we assume a
non informative prior p(Ψ) = 1, and

p(Y |θ,Ψ) =Qt p(Yt|θt, ψ) = −1/2
£
T
P

i log(σ
2
i ) +

P
t

P
i(u

2
it/σ

2
i )
¤
, (17)

p(θ|Ψ) =Qt p(θt|θt−1, ψ) = −1/2
£
T
P

i log(|Σ|) +
P

t(e
|
t (Σ

|Σ)−1et
¤
, (18)

uit = Yit −Ai(δ0,Σ, µ
∗, φ∗)−Bi(δ1, φ

∗)Xt, et = θt − µ− φθt−1 (19)

The distribution of the parameters,

p(θ|Y,Mt, ψ) ∝ p(Y |θ,Mt,Ψ)p(θ|Mt,Ψ)p(Ψ), (20)
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cannot be derived analytically, but the Clifford-Hammersley theorem guarantees
that the recursive sampling of subsets of parameters, obtained from the com-
plete conditional distributions, converges to the joint distribution. The subsets
are chosen in a convenient way such that the subproblems have, when possi-
ble, analytical solutions and known complete conditional distributions, as is the
case of subproblems 1-3 bellow. These problems correspond to, respectively,
an estimation of a VAR model, the variance of known random variables, and
the extraction of unobservable factors from a multivariate dynamic model. The
subproblem (4) relative to ζ does not have known expression and its distribution
will be derived utilizing the Metropolis-Hastings rejection method (Gamerman,
2001, and Johannes and Polson, 2003), with a proposal obtained from a normal
distribution, centered on the value of the previous iteration, and with an arbi-
trarily fixed variance such that the acceptance rate is in the interval [0.3, 0.8].
The distributions calculated in each step of the algorithm are:

1. (µw, φw) ∼ p(µ, φ|σw, ζw, θw),
2. σw ∼ p(σ|µw, φw, ζw, θw),
3. θw ∼ p(θ|µw, φw, ζw, σw),
4. ζwi ∼ p(ζi|ζw−i, µ, φ,Σ, σ, θ),

We have:
Subproblem1: p(µ, φ|σw, ζw, θw) ∼ N((X|X)−1X|X∗, (X|X)−1⊗Σ), where
X = (θw1 , ..., θ

w
T−1)

| , X∗ = (θw2 , ..., θ
w
T )
| .

Subproblem2: p(σ|µ, φ, ζ, θ) ∼ IG(diag(e|e)), where e = Y −A− BX, and
IG is the inverse gamma distribution.
Subproblem3: p(θ|µ, φ, σ, ζ) = Q

t p(θt|µ, φ, σ, ζ), where p(θt|µ, φ, σ, ζ) =
p(θt|DT ) ∼ N(ht,Ht) is the FFBS algorithm defined in the Appendix.
The subproblems 1-3 are common to all models. The subproblem 4 depends

on the definition of ζ. In the case of the LP there is no ζ, and so subproblem 4
is not defined.
In the case of the CF model, ζ = (A,B) is estimated without restrictions.

Subproblem 4 becomes

(ζ|µ, φ, σ, θ) = (A,B|µ, φ, σ, θ) = N((θw|θw)−1θw|Y, (θw|θw)−1 ⊗ σ2). (21)

In the models NA and NS, the parameter ζ do not have known condi-
tional distribution. In this case, its distribution will be obtained through a
rejection method - Metropolis-Hastings - where the proposal is sampled from
a normal distribution centered on the value of the previous iteration, with
arbitrarily fixed variance such that the acceptance ratio lies in the interval
[0.3, 0.8]: p(ζi|ζi−1, µ, φ, σ, θ) ∼ N(ξki , c) and accepts if p(Y |ξki )−p(θ|ξk−1i ) > u,
u ∼ U(0, 1).
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3.1 Performance Criteria

The models under investigation have a different number of parameters, and
hence they must be compared emphasizing forecasting performance or adherence
to data. Gelfand and Ghosh (1998) proposed the minimum posterior predictive
loss (PPL) criterion emphasizing forecasting performance. Spiegelhalter (2002)
proposed the DIC criterion emphasizing adherence. Besides those measures,
we will calculate Theil’s U statistical measure, which consists of normalizing
the MSE of out-of-sample forecasts and of in-sample adherence with respect to
corresponding measures using random walks.

3.1.1 Minimum posterior predictive loss

For each point of the distribution of the estimators Ψw ∼ (Ψ|Y ) there corre-
sponds a forecasting for the yield curve Y | Ψw. Gelfand and Ghosh (1998)
proposes a loss function penalizing the expected error E(Y |Ψw) − Y and the
variance of the forecasts Y |Ψw − E(Y |Ψw). In our case, the target variable is
multivariate, so that we take the mean of the expected losses calculated for each
of the maturities. In other words, the criterion is:

PPL =
X
i

X
t

¡
Y i
t −E(Y i

t |Ω)
¢2
+
X
i

X
t

1

Nw

X
w

¡
E(Y i

t |Ψw)−E(Y i
t |Ω)

¢2
,

(22)

3.1.2 Divergence of Information Criterion (DIC)

Spiegelhalter (2002) proposed a generalization of the AIC criterion based on the
distribution of the divergence D(Ψ) = −2 logL(Ψ):

DIC = E(D(Ψ))− pd = 2E(D(Ψ))−D(E(Ψ)), (23)

where pd = E(D(Ψ))−D(E(Ψ)) measures the equivalent number of parameters
in the model, E(D(Ψ)) is the mean of the divergences taken in the posterior
distribution of the estimators and D(E(Ψ)) is the divergence calculated at the
mean point of the posterior distribution of the estimators.
Banerjee et al (2004) claims that LLP and DIC evaluate the fitting and

penalize the degree of complexity of the models, but that the DIC takes into
account the likelihood on the space of the parameters and PPL on the predic-
tive space. Thus, when the main interest lies is forecasting, the PPL is to be
preferred, whereas when the capacity of the model to explain the data is more
interesting, DIC should be used.

3.1.3 Theil’s U

When the processes under study have high persistency, the simplest represen-
tation, the random walk, frequently adheres to data. This is our case, in which
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hardly the yield curve suffers abrupt changes. Hence, a direct criterion to eval-
uate the results of the model is to compare it to the results of the random
walk with the same set of information. Theil proposed to make this comparison
taking the ratio between the standard deviation of the errors of the one-step
forecasts and the standard deviation of the first difference of the variable. In
our case, this result is calculated for each maturity, and when necessary it is
summarized by the mean value along all maturities. The formula is:

Theil-U =

ÃP
t(Yt − bYt|t−21)2P
t(Yt − Yt−21)2

! 1
2

. (24)

4 Results
The performance of the models is evaluated in 3 markets having distinct features.
The first one is the DIxPRE Swap contract traded in the Brazilian futures market
(BM&F) for many maturities, and is used as an approximation to the term
structure of public bonds traded in the domestic market. The second one is
the market of Sovereign bonds issued by the Brazilian Treasury. We use data
treated by Bloomberg which provides constant maturity zero-coupon bonds. It
is smaller and less liquid than the domestic government bonds market, and,
being a sovereign bond depends more directly on the effects of fluctuations
of the perception of risk that agents have about the capacity of the Brazilian
government to honour those bonds, that is, on credit risk. Finally, the third
market is that of the US Treasury bonds. The Federal Reserve provides free of
coupon and constant maturity rates.
The features of the interest rates market and the availability of data moti-

vated our choice of analyzing the markets with daily frequency. This was partic-
ularly important for the Brazilian domestic market, which, like other emerging
markets, has specific characteristics. It is conditioned to the credit risk of the
public debt, to the higher volatility of the rates due to macroeconomic instabil-
ity, to the vulnerability of the exchange rate, and finally, to interventions of the
monetary authorities. In January 1999, Brazil adopted the floating exchange
rate regime, which changed the mechanism of the formation of the domestic
and foreign interest rates. Consequently, the sample used in the estimations
was [01/1999, 09/2005]. The lower temporal dimension was partly compen-
sated with the use of daily data.
In the Brazilian sovereign market, the data is available starting in March

1998 and ending in July 2005. For convenience, we analyze the US Treasury for
the same period.
The degree of linear dependence among the maturities of the 3 markets was

measured calculating the proportion of the variance that is explained by the
first 3 principal components of the correlation matrix. The table below suggests
that the markets have at most 3 sources of independent stochastic variance.
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First Second Third
Swap 90.5 9.0 0.5
Sovereign 95.6 3.6 0.3
FED 95.9 3.6 0.5

In the NA model, the time has 2 dimensions, the historical time in which
data is collected, and the maturity time of the yield curve. The periodicity of
the former, τ1, is daily in our exercise, while of the latter, τ2, which gives the
interval between maturities, is monthly. It is necessary to adjust the variance of
the innovations for the difference in the periodicities1 . Note that the transition
equations for the P-measure and Q-measure are defined independently.
The forecasting horizon of interest not necessarily coincides with the peri-

odicity of the data. When we are interested in the forecasting horizon h > τ1,
which is Yt|t−h = φhYt−h = φ∗Yt−h, the model can be estimated maximizing the
likelihood of the h-steps forecasting. In the case of a first order autoregression,
this is done choosing a lag of size h. The results for different values of h are
not necessarily equal, for in each case the likelihood is specific for the horizon
of interest.
The previous table suggests that the 3 sets of data have at least 2 stochastic

sources, and so the models will have two latent factors. The tables 1-3 show
the performance of the 4 models, all estimated for the forecasting horizon of 21
days, the mean number of commercial days in a month, according to 3 proposed
criteria. In case of the models that do not have no arbitrage restrictions, versions
with 1 and 3 factors were estimated to evaluate the sensibility of the results to
this parameter. In the case of 1 factor, the NS and LP are identical, and so the
results are presented jointly.
Note that for the DIC, PPL and Theil-U, the lower the value the better.

Table1. Forecasting performance in the Swap market.

#F 1 2 3
CF NS/LP NA CF NS LP CF NS LP

DIC -30.0 -28.6 -38.2 -43.7 -41.4 -41.6 -53.6 -22.7 -51.0
PPL 0.190 0.333 0.079 0.060 0.215 0.087 0.053 8.367 0.083

Table2. Forecasting performance in the Brazilian sovereign bonds market.

#F 1 2 3
CF NS/LP NA CF NS LP CF NS LP

DIC -65.0 -63.3 -77.6 -86.4 -85.1 -82.1 -101.6 -95.9 -74.0
PPL 0.175 0.200 0.133 0.122 0.131 0.180 0.120 0.140 1.759

Table3. Forecasting performance in the US Treasury market.

1When the periodicity of the innovations is τ1 and the no arbitrage equations are defined
for the periodicity τ2 then if V = ΣΣ| , k = int(τ2/τ1), then Vτ2 = Vτ1 +φ|V φ+φ2|V φ2+
...+ φk|V φk.
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#F 1 2 3
CF NS/LP NA CF NS LP CF NS LP

DIC -84.1 -77.4 -102 -110 -104 -100 -128 -118 -122
PPL 0.60 2.50 0.27 0.25 0.33 0.79 0.21 0.44 0.25

Tables 1-3 show that:

• The performance of the CF model is always superior to the other models,
for the any number of factors and for the 3 sets of data.

• The models with 3 factors are in general better than those with 2 factors,
but the improvement is much less when comparing with the 1 factor mod-
els. This suggests that in the 3 cases there are at least 2 factors, and that
in some cases a third may be possible to estimate.

• The performance of the NA model is worse than the CF according to
2 criteria for the 3 markets. But is similar to the best model when we
consider the PPL criterion.

• The NS is better than the LP or not depending on the market and on the
criterion.

The comparison between the mean squared error (MSE) of the model and
of the random walk (rw), the Theil’s U statistic, is a measure of practical util-
ity. Models with errors greater than that of the random walk are useless for
forecasting. This error depends on the forecasting horizon. In mean-reversion
processes, the error of the rw tends to grow faster than that of the model with
respect to greater horizons. Tables 4-5 present results of the model CF with 2
factors and for 3 markets: 1) the PPL criterion, 2) the mean of the MSE for
the forecasting errors of the model for all maturities in the indicated horizon,
3) the mean of Theil’s U statistics computed in-sample, and finally 4) the value
of the out-of-sample Theil-U for all maturities (last 30 observations).
Values of out-of-sample Theil-U’s less than 1 are highlighted because it

means the model presented better forecasting performance than the rw.

Table 4. Effect of the forecasting horizon. Swaps.
lags 10*PPL 10*MSE In-sample TU

1 0.09 0.03 1.41
5 0.21 0.09 1.06
10 0.33 0.18 0.99
21 0.51 0.31 0.94

Out-of-sample Theil U
lags 1 2 3 6 9 12 18 24 36
1 4.52 1.62 0.99 1.58 1.62 1.82 1.51 1.01 3.93
5 1.51 0.96 0.93 1.08 0.99 1.03 1.04 1.08 2.20
10 0.81 0.70 0.75 1.11 0.96 0.91 0.97 1.13 1.84
21 0.52 0.59 0.58 0.94 1.14 1.06 1.11 1.40 2.32
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The results indicate that:

• When the horizon is 20 times greater, the MSE rises 10 times, less than
what would happen with a rw.

• For horizons above 5 days the predictions of the model are better than
those of the random walk.

Table 5. Effect of the forecasting horizon. Brazilian Sovereign bonds.

lags 10*PPL 10*MSE In-Sample TU
1 0.22 0.06 0.99
5 0.28 0.19 1.08
10 0.70 0.31 1.03
21 1.15 0.53 0.99

Out-of-sample Theil U
lags 1 6 12 24 36 60 84 120 240
1 1.36 0.81 0.62 0.99 2.53 4.40 4.03 5.73 5.77
5 1.31 0.83 1.57 0.91 1.01 1.80 1.31 5.74 6.23
10 1.16 0.70 1.04 0.66 1.10 2.20 1.77 5.60 6.17
21 1.36 0.81 0.62 0.99 2.53 4.40 4.03 5.73 5.77

The results show that:

• When horizon is 20 times greater, the MSE is 9 times greater.
• Better forecasts are not linked to the horizon, but are linked to maturities
[6,24] months.

Table 6. Effect of the forecasting horizon. US Treasury.

lags 100*PPL 100*MSE In-Sample TU
1 0.075 0.015 1.03
5 0.125 0.030 1.10
10 0.168 0.048 1.21
21 0.251 0.086 1.85

Out-of-sample Theil U
lags 1 6 12 24 36 60 84 120 240
1 0.60 1.20 2.20 4.04 3.49 1.70 0.94 1.51 4.20
5 0.51 1.12 2.76 4.02 3.23 1.78 0.85 1.01 3.57
10 1.49 1.09 3.84 5.21 4.22 2.17 0.92 1.12 4.08
21 5.87 0.98 7.06 11.89 9.81 4.44 0.98 2.02 9.61

The results show that the model presents a superior forecasting performance
with respect to the random walk only for the short rate and for horizons up to
5 days.
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5 Conclusion
We analyzed with daily data 3 yield curves, the Brazilian domestic market inter-
est rate swaps, the Brazilian sovereign bonds and US Treasury bonds, equipped
with 4 models: the common factor model of the time series literature, the affine
no arbitrage model of the Finance literature, and 2 models that geometrically
decompose the yield curve, Nelson-Siegel and Legendre polynomials, modified
to include dynamic effects of the latent components.
It resulted that the common factor model, in spite of having a much greater

number of parameters, had better performance according to two criteria, the
posterior predictive loss and DIC, related to the predictive and explanatory
power of the model, respectively. Also, the affine model presented inferior but
comparable results. This may be attributed to the complexity of estimation of
the risk premia.
The common factor model was used to evaluate the effect of the forecasting

horizon on the forecasting performance in the 3 markets. Depending on the
market, the model tend to have better results compared to the random walk for
longer horizons.
An immediate extension of this work is the incorporation of macro state

variables as Ang and Piazzesi (2003), and evaluate the predictive performance
of the models with and without no arbitrage.
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A Appendix: Kalman Filter and FFBS algo-
rithm

We present the Kalman Filter and the FFBS algorithm of the Dynamic Linear
Model (DLM) in which part of the components are observed (M). Defining

Yt = A+BMMt +Bθθt + et, et ∼ N(0, Iσ),
Mt = µM + φMMMt−1 + φMθθt−1 + uMt ,
θt = µθ + φθMMt−1 + φθθθt−1 + uθt ,

(25)

we obtain the linear dynamic model

Yt = yt + Fθt + et, et ∼ N(0, Iσ),
θt = xt +Gθt + ut, ut ∼ N(0,W ),
where yt = A+BMMt,
xt = µθ + φθMMt−1,
F = Bθ, G = φθθ.

(26)

that can be estimated as follows:
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Given: (θt−1|Dt−1) ∼ N(mt−1, Ct−1).
Prior: (θt|Dt−1) ∼ N(at, Rt),
where at = Gmt−1 Rt = GCt−1GT +W.
Forecast: (Yt|Dt−1) ∼ N(ft, Qt),
where ft = Fat Qt = FRtF

T + σ.
Posteriori: (θt|Dt) ∼ N(mt, Ct),
where mt = at +At(Yt − ft), Ct = Rt −AtQtA

T
t , At = RtFQ

−1
t .

(27)

Once the conditional distribution of (θt|Dt) t = 1..T is obtained, the FFBS
algorithm permits one to obtain a sample of (θt|DT ).

Given: (θT |DT ) ∼ N(mT , CT ).
(θt|θt+1) ∼ N(ht,Ht),
where ht = mt +Bt(θt+1 − at+1) Ht = Ct −BtRt+1B

T
t Bt = CtG

TR−1t+1.
(28)
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