TEXTO PARA DISCUSSÃO INTERNA
Nº 101

"Testing for First Order Serial Correlation in Temporally Aggregated Regression Models"

Pedro L. Valls Pereira

Novembro de 1986
"Testing for First Order Serial Correlation in Temporally Aggregated Regression Models"

Pedro L. Valls Pereira

Novembro de 1986
Este trabalho é da inteira e exclusiva responsabilidade de seu autor. As opiniões nele emitidas não exprimem, necessariamente, o ponto de vista da Secretaria de Planejamento da Presidência da República.
TESTING FOR FIRST ORDER SERIAL CORRELATION IN TEMPORALLY AGGREGATED REGRESSION MODELS

Pedro L. Valls Pereira
INPES - IPEA

ABSTRACT
This paper shows that the LM statistic for testing first order serial correlation in regression models can be computed using the Kalman Filter.

It is shown that when there are missing observations, the LM statistic for this test is equivalent to the test statistic derived by Robinson (1985) using the likelihood conditional on the observation times.

The Kalman Filter approach is preferable because the test statistic for first order serial correlation in temporally aggregated regression models can be obtained as an extension of the previous case.

KEYWORDS: First Order Serial Correlation; LM test; Regression Models; Missing Observations; Temporal Aggregation; Kalman Filter.

1This paper was written during a visit to LSE. Research support was provided by the British Council and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). I am grateful to the members of the DEMEIC workshop for helpful comments and specially to Prof. Peter Robinson.
1 INTRODUCTION

The most common test against autocorrelated errors in regression models is the bounds test of Durbin & Watson (1950, 1951, 1971). Many authors - Breusch (1978) and Godfrey (1978) among others - observed that the Durbin's h statistic (see Durbin (1970)) can be derived from the general theory of the LM test procedure.

When observations are missing in regression models, a modified Durbin - Watson statistic was proposed by Savin & White (1978) d Dufour & Dagenais (1985).

In a recent paper Robinson (1985) applied the LM principle and derived two test statistics, where one is obtained using an unconditional form of the likelihood and the other using the likelihood conditional on the observation times. Asymptotic distributions of the test statistics are established and analytic comparison of efficiencies are made.

The motivation for using the LM approach is that it produces an asymptotically locally most powerful test and the X^2 asymptotic approximation to its distribution is robust to departures from normality.

This paper follows Robinson's approach and a LM statistic for testing serial correlation in regression models with missing observations is obtained. This test statistic is obtained as a by - product of the Kalman Filter recursions. It is shown that a reparametrization of the parameter space is useful in obtaining this test statistic.

This approach is used because the extension to temporally aggregated regression models can be done very easily.

The structure of this paper is as follows. In section 2, the LM statistic for testing serial correlation in regression models with missing observations is obtained.

Section 3 extends the results to temporally aggregated regression models.

Concluding remarks are made in Section 4.

2 THE LM STATISTIC FOR TESTING FIRST ORDER SERIAL CORRELATION IN REGRESSION MODELS WITH MISSING OBSERVATIONS

Consider the regression model with autocorrelated errors, i. e.:

$$y(t) = x'(t) \beta + u(t) \quad t = 1, \ldots, T$$ (2.1)

$$u(t) = \rho u(t-1) + \epsilon(t)$$ (2.2)

where $x(t)$ is a $k \times 1$ vector of nonstochastic regressors, independent of $u(t)$, β is a $k \times 1$ vector of unknown parameters and $\epsilon(t)$ is i.i.d. $N(0, \sigma^2)$.

It is assumed that $y(t)$ is observed each m time periods (sometimes called "skip sampling"), i. e. $y = y(mt) \tau = 1, \ldots, [T/m]$ is the observed endogenous variable and $x(t)$ is observed for each time period.

The proposition below proves that the regression model for the observed data has parameters $\beta, \rho = \rho^m$ and $\sigma^2 = (1 + \rho^2 + \ldots + \rho^{2(m-1)}) \sigma^2$. Therefore the log likelihood function for this regression model will be a function of the new parameter set $\Psi = (\rho, \beta', \sigma^2)$ and the LM statistic for testing $H_0 : \rho = 0$ vs $H_0 : \rho \neq 0$ will be obtained using this reparametrization, because testing $\rho = 0$ is equivalent to test $\rho = 0$. INPES, 101/86
Proposition I.

Consider the regression model with autocorrelated errors given by (2.1-2). If the endogeneous variable \(y(t) \) is observed only for \(t \equiv 0 \pmod{m} \), the observed model is given by:

\[
y_{\tau} = x^{\tau}_t \beta + u_{\tau} \quad \tau = 1, \ldots, \left\lfloor \frac{T}{m} \right\rfloor
\]

and \(u_{\tau} = \rho u_{\tau-1} + \epsilon_{\tau} \)

where \(\epsilon_{\tau} \) is i. i. d. N \((0, \sigma_{\epsilon}^2) \) where \(\sigma_{\epsilon}^2 = (1 + \rho^2 + \ldots + \rho^{2(m-1)}) \sigma^2 \) and \(\rho_m = \rho^m \).

Proof: see Appendix I

In order to obtain the log likelihood function for the model (2.3-4) the Kalman Filter recursions will be used.

The state space representation of the model (2.3-4) is given by the measurement equation, i. e.:

\[
y_{\tau} = (1, 0) \alpha_{\tau} \quad \tau = 1, \ldots, \left\lfloor \frac{T}{m} \right\rfloor
\]

\[
y_{\tau} = z_{\tau} \alpha_{\tau}
\]

and the transition equation, i. e.:

\[
\alpha_{\tau} = \begin{bmatrix} 0 & \rho_m \\ 0 & \rho_m \end{bmatrix} \alpha_{\tau-1} + \begin{bmatrix} x^{\tau}_t \beta \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \epsilon_{\tau}
\]

\[
\Leftrightarrow \alpha_{\tau} = \Phi \alpha_{\tau-1} + \epsilon_{\tau} + R \epsilon_{\tau}
\]

where \(\text{Var}(\epsilon_{\tau}) = \sigma_{\epsilon}^2 R \).

The log likelihood function can be obtained using the prediction error decomposition (see Harvey (1981)) and is given by:

\[
I(\Psi) = \ln L(\rho, \beta, \sigma^2_\epsilon) = -\frac{T}{2m} \ln 2\pi - \frac{T}{2m} \ln \sigma^2_{\epsilon} - \frac{1}{2} \sum_{\tau=1}^{\left\lfloor \frac{T}{m} \right\rfloor} \ln f_{\tau} - \frac{1}{2\sigma^2_{\epsilon}} \sum_{\tau=1}^{\left\lfloor \frac{T}{m} \right\rfloor} \nu^2_{\tau}
\]

where \(\nu_{\tau} \) is the prediction error and \(\sigma^2_{\epsilon} f_{\tau} \) is the variance of the prediction error and they are obtained by the Kalman Filter recursions (see Harvey (1981) pages 107 - 111). These recursions are given by two sets of equations: the prediction equations and the updating equations. In order to start these recursions, the mean, \(a_0 \), and the variance - covariance matrix, \(\sigma^2_{\epsilon} P_0 \), of the state space vector at time \(t = 0 \) are needed. The log likelihood (2.7) is obtained when these starting values are given by:

\[
a_0 = 0
\]

\[
P_0 = \begin{bmatrix} \kappa & 0 \\ 0 & \frac{1}{1-\rho^2} \end{bmatrix}
\]

INPES, 101/86
where \(\kappa \) is a large number, e.g. \(\kappa = 10^6 \), which is equivalent to use a diffuse prior for the initial conditions (see Ansley & Kohn (1985)).

It is easy to see that

\[
\nu_1 = y_1 - x_1' \beta \\
\nu_{\tau} = (y_{\tau} - x_{\tau}' \beta) - \rho_{\kappa}(y_{\tau-1} - x_{\tau-1}' \beta) \quad \tau = 2, \ldots, \lfloor \frac{T}{m} \rfloor
\]

and

\[
f_1 = \frac{1}{1 - \rho_{\kappa}^2} \quad \left(2.10\right)
\]

\[
f_{\tau} = 1 \quad \tau = 2, \ldots, \lfloor \frac{T}{m} \rfloor \quad \left(2.11\right)
\]

In order to derive the LM statistic for testing for first order autocorrelation, the first derivatives of the log likelihood function and the information matrix are needed. Pagan (1978) or Engle & Watson (1981) have shown that the information matrix can be computed using only first derivatives of the likelihood function. These derivatives are computed using auxiliary recursions (see Appendix II).

By Breusch & Pagan (1978), the LM statistic for testing for first order autocorrelation is given by:

\[
LM = \bar{D}_1 \left(\bar{I}_{\rho_{\kappa}} - \bar{I}_{\beta} \bar{I}_{\beta}' \bar{I}_{\beta} \right)^{-1} \bar{D}_1 \quad \left(2.12\right)
\]

where

\[
\bar{D} = \begin{bmatrix} \frac{\partial}{\partial \beta} \\ \frac{\partial}{\partial \beta} \\ \frac{\partial}{\partial \beta} \end{bmatrix} \left(\bar{\Psi} \right) = \begin{bmatrix} \bar{D}_1 \\ 0 \\ 0 \end{bmatrix}
\]

and

\[
\bar{I} = \begin{bmatrix} I_{\rho_{\kappa}} & I_{\rho_{\kappa} \beta} & I_{\rho_{\kappa}} \\ I_{\rho_{\kappa} \beta} & I_{\beta \beta} & I_{\beta \beta} \\ I_{\rho_{\kappa}} & I_{\rho_{\kappa} \beta} & I_{\rho_{\kappa} \beta} \end{bmatrix} \left(\bar{\Psi} \right)
\]

is the Fisher information matrix evaluated at \(\bar{\Psi} = \bar{\Psi}_{H_0} = (0, \bar{\beta}, \bar{\sigma}_2^2) \) and

\[
\bar{\beta} = \left(\left(X^*\right)' \left(X^*\right) \right)^{-1} \left(X^*\right)' Y^*
\]

\[
X^* = \begin{bmatrix} x(m), x(2m), \ldots, x(T) \end{bmatrix}
\]

\[
Y^* = \begin{bmatrix} y(m), y(2m), \ldots, y(T) \end{bmatrix}
\]

\[
\bar{\sigma}_2^2 = \frac{1}{T} \sum_{\tau=1}^{T} \left(y_{\tau} - x_{\tau}' \bar{\beta} \right)^2 = \frac{1}{T} \sum_{\tau=1}^{T} \bar{u}_{\tau}^2
\]

From Appendix III it follows that:

\[
LM = \frac{T}{m} \left(r_1 \right)^2 \quad \left(2.13\right)
\]
where

$$r^*_t = \frac{\sum_{i=1}^{T/m} \bar{u}_r \bar{u}_{r-1}}{\sum_{i=1}^{T/m} \bar{u}_r} \tag{2.14}$$

which is exactly the s_1 statistic derived by Robinson (1985).

3 THE LM STATISTICS FOR TESTING FIRST ORDER SERIAL CORRELATION IN TEMPORALLY AGGREGATED REGRESSION MODELS

Now it is assumed that the endogenous variable $y(t)$ in (2.1) is a flow variable and instead of observing $y(t)$ every time period, is y_r which is observed, i.e.:

$$y_r = \sum_{j=0}^{m-1} y(mr - j) \quad r = 1, \ldots, \left[\frac{T}{m}\right] \tag{3.1}$$

Given that model (2.1-2) is the disaggregated model, i.e. for times $t = 1, \ldots, t$, Proposition II below derives the aggregated model, i.e. for $r = 1, \ldots, \left[\frac{T}{m}\right]$ and the endogenous variable is given by (3.1).

Proposition II.

Given model (2.1-2) and assume that y_r is given by (3.1). Then the aggregated model is given by:

$$y_r = x'_r \beta + u_r \quad r = 1, \ldots, \left[\frac{T}{m}\right] \tag{3.2}$$

$$u_r = \rho u_{r-1} + \epsilon_r^* + \theta \epsilon_{r-1}^* \tag{3.3}$$

where

$$x'_r = \sum_{j=0}^{m-1} x'(mr - j)$$

$$\rho = \rho_m$$

$$\epsilon_r^* \sim N(0, \sigma^2_\epsilon)$$

and θ and σ^2 are given by the solutions of the following equations:

$$(1 + \theta^2)\sigma^2 = [1 + (1 + \rho)^2 + (1 + \rho + \rho^2)^2 + \ldots + (1 + \rho + \ldots + \rho^{m-1})^2] +$$

$$+ \rho^2(1 + \rho + \ldots + \rho^{m-2})^2 + \rho^4(1 + \rho + \ldots + \rho^{m-3})^2 +$$

$$+ \ldots + \rho^2(m-1)|\sigma^2| \tag{3.4}$$

$$\theta \sigma^2 = \rho(1 + \rho + \ldots + \rho^{m-2}) + (1 + \rho)\rho^2(1 + \rho + \ldots + \rho^{m-3}) +$$

$$+ \ldots + (1 + \rho + \ldots + \rho^{m-3})\rho^{m-2}(1 + \rho) +$$

$$+ (1 + \rho + \ldots + \rho^{m-2})\rho^{m-1}|\sigma^2| \tag{3.5}$$

$$|\theta| < 1 \tag{3.6}$$
Proof: see Appendix IV

The LM statistic for testing first order serial correlation will be derived using the Kalman Filter recursions. In order to use these recursions the state space representation of model (3.2-3) is needed.

This representation is given by the measurement equation, i.e.:

\[y_t = (0, 0, 1) \alpha_t \quad \tau = 1, \ldots, \left[\frac{T}{m} \right] \] \hspace{1cm} (3.7)

\[\Leftrightarrow y_t = Z_t \alpha_t \]

and the transition equation, i.e.:

\[\alpha_t = \begin{bmatrix} \rho_\pi & 1 & 0 \\ 0 & 0 & 0 \\ \rho_\pi & 1 & 0 \end{bmatrix} \alpha_{t-1} + \begin{bmatrix} 0 \\ 0 \\ z_t' \beta \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \epsilon_t^* \] \hspace{1cm} (3.8)

\[\Leftrightarrow \alpha_t = \Phi \alpha_{t-1} + c_t + R \epsilon_t^* \]

where \(\text{Var}(\epsilon_t^*) = \sigma^2 Q. \)

The Kalman Filter recursions are started by

\[a_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]

\[P_0 = \begin{bmatrix} 1 + 2 \rho_\pi \theta_\pi + \theta_\pi^2 & \theta_\pi & 0 \\ \theta_\pi & \theta_\pi^2 & 0 \\ 0 & 0 & \kappa \end{bmatrix} \]

and the log likelihood function is given by (2.7).

It is easy to see that:

\[\nu_1 = y_1 - z_1' \beta \] \hspace{1cm} (3.9)

\[\nu_t = (y_t - z_t' \beta) - \rho_\pi(y_{t-1} - z_{t-1}' \beta) - \theta_\pi f_{t-1}^{-1} \nu_{t-1} \quad \tau = 2, \ldots, \left[\frac{T}{m} \right] \] \hspace{1cm} (3.10)

and

\[f_1 = \frac{1 + 2 \rho_\pi \theta_\pi + \theta_\pi^2}{1 - \rho_\pi^2} \] \hspace{1cm} (3.11)

\[f_t = 1 + \theta_\pi^2 (1 - f_{t-1}^{-1}) \quad \tau = 2, \ldots, \left[\frac{T}{m} \right] \] \hspace{1cm} (3.12)

It is easy to see that under \(H_0 \) (and under some conditions on the \(x(t) \)), i.e. \(\rho = 0 \Leftrightarrow \rho_\pi = 0; \)

1. the OLS estimate of \(\beta \), i.e. \(\hat{\beta} \) is given by:

\[\hat{\beta} = (Z'Z)^{-1} Z'Y^* \] \hspace{1cm} (3.13)
where \(Z = (z_1, \ldots, z_{\frac{T}{m}}) \), \(z_r = \sum_{j=0}^{m-1} x(mr-j) \);

(ii) the prediction error is given \(\nu_r = y_r - z_r^T \beta \) \(\forall r \);

(iii) the variance of the prediction error is given by \(f_r = 1 \) \(\forall r \);

(iv) and \(\tilde{\sigma}^2 = m \tilde{\sigma}^2 = \frac{1}{m} \sum_{r=1}^{\left[\frac{T}{m} \right]} (y_r - z_r^T \beta)^2 = \frac{1}{m} \sum_{r=1}^{\left[\frac{T}{m} \right]} \tilde{\nu}_r^2 \).

From Appendix V, it follows that:

\[
LM = \frac{T}{m} (r^*_l)^2
\]

where

\[
r^*_l = \frac{\sum_{r=1}^{\left[\frac{T}{m} \right]} \tilde{\nu}_r \tilde{\nu}_{r-1}}{\sum_{r=1}^{\left[\frac{T}{m} \right]} \tilde{\nu}_r}
\]

4 CONCLUDING REMARKS

It was shown that the LM statistic for testing first order serial correlation can be derived as a by-product of the Kalman Filter recursions.

In order to use the Kalman Filter recursions to derive the LM statistic a reparametrization was necessary.

It was shown that the LM statistic for testing first order serial correlation in regression models with missing observations, is equivalent to the \(s_1 \) statistic derived by Robinson (1985). This statistic is obtained from the likelihood conditional on the observation times. The LM statistic can be interpreted as \(\left[\frac{T}{m} \right] \) times \(R^2 \), the coefficient of determination of the regression of \(\tilde{\nu}_r \) in \(\tilde{\nu}_{r-1} \), where \(\tilde{\nu}_r = y_r - z_r^T \), i.e. the residuals, under \(H_0 \), of model (2.1) for every \(m \) time period. An extension for regression models where the endogenous variable is observed at every time period for \(t = 1, \ldots, p_0 T \quad (1 \leq p_0 < 1) \) and for \(t = p_0 T + 1, \ldots, T \) is observed at every \(m \) time period, is given in Pereira (1985).

Using the Kalman Filter recursions, it was possible to extend this result to temporally aggregated regression models. As before the LM statistic can be interpreted as \(\left[\frac{T}{m} \right] \) times \(R^2 \) coefficient of determination of the regression of \(\tilde{\nu}_r \) in \(\tilde{\nu}_{r-1} \), where \(\tilde{\nu}_r = y_r - z_r^T \) and \(z_r = \sum_{j=0}^{m-1} x(mr-j) \), i.e. the residuals under \(H_0 \) of model (3.2-3).

APPENDIX I

(2.1-2) can be rewritten as follows:

\[
(1 - \rho L)y(t) = (1 - \rho L)x'(t)\beta + \epsilon(t)
\]

(A.I.1)

Multiplying both sides of (A.I.1) by \((1 + \rho L + \ldots + \rho^{m-1} L^{m-1})\), it follows:

\[
(1 - \rho^m L^m)y(t) = (1 - \rho^m L^m)x'(t)\beta + (1 + \rho L + \ldots + \rho^{m-1} L^{m-1})\epsilon(t)
\]

(A.I.2)

INPES, 101/86
Now define

\[B = L^m \]
\[\rho_* = \rho^m \]
\[\epsilon^*_{\tau} = (1 + \rho L + \ldots + \rho^{m-1} L^{m-1}) \epsilon(t) \quad \tau = 1, \ldots, \left\lfloor \frac{T}{m} \right\rfloor \]

then (A.I.2) can be rewritten as follows:

\[(1 - \rho_* B) y_r = (1 - \rho_* B) x'_r \beta + \epsilon^*_r \quad \text{(A.I.3)} \]

\[y_r = x'_r \beta + u_r \quad \text{(A.I.4)} \]

\[u_r = \rho_* u_{r-1} + \epsilon_r \quad \text{(A.I.5)} \]

Using the results of Tiao(1972) or Pereira(1986) it follows that \(\epsilon^*_r \sim NID(0, \sigma^2) \) where \(\sigma^2 = (1 + \rho^2 + \ldots + \rho^{2(m-1)}) \sigma^2 \).

APPENDIX II

Taking derivatives of (2.3) with respect to the parameters, it follows that:

\[\frac{\partial l}{\partial \psi_i} = \frac{1}{2 \sigma^2} \sum_{r=1}^{[T]} \frac{\nu_r^2}{f_r} \frac{\partial f_r}{\partial \psi_i} - \frac{1}{2 \sigma^2} \sum_{r=1}^{[T]} \frac{\nu_r}{f_r} \frac{\partial \nu_r}{\partial \psi_i} \]

\[- \frac{1}{2} \sum_{r=1}^{[T]} \frac{\partial f_r}{f_r} \quad i = 1, \ldots, k + 1 \quad \text{(A.II.1)} \]

\[\frac{\partial l}{\partial \sigma^2} = \frac{T}{2 m \sigma^2} + \frac{1}{2 \sigma^4} \sum_{r=1}^{[T]} \frac{\nu_r^2}{f_r} \quad \text{(A.II.2)} \]
and the information matrix is given by:

\[
I_{\psi_i \psi_j} = \frac{1}{\sigma^2} \sum_{r=1}^{k} \frac{1}{f_r} \left[\frac{\partial \nu_r}{\partial \psi_i} \right] \left[\frac{\partial \nu_r}{\partial \psi_j} \right] - \frac{1}{2} \sum_{r=1}^{k} \frac{1}{f_r^2} \frac{\partial \nu_r}{\partial \psi_i} \frac{\partial f_r}{\partial \psi_j} \quad i, j = 1, \ldots, k + 1
\]
(A.II.3)

\[
I_{\nu_i \nu_j} = \frac{1}{\sigma^2} \sum_{r=1}^{k} \nu_r \frac{\partial \nu_r}{\partial \psi_i} - \frac{1}{2\sigma^2} \sum_{r=1}^{k} \frac{\nu_r^2}{f_r} \frac{\partial f_r}{\partial \psi_i} \quad i = 1, \ldots, k + 1
\]
(A.II.4)

\[
I_{\nu_i \nu_j} = \frac{T}{2m\sigma^2}
\]
(A.II.5)

In order to obtain (A.II.1-4), it is needed auxiliary recursions for the derivatives. They are:

Prediction Equations

\[
\frac{\partial \Phi}{\partial \psi_i} = \frac{\partial \Phi}{\partial \psi_i} - 1 + \Phi \frac{\partial \Phi}{\partial \psi_i} \frac{\partial \nu_r}{\partial \psi_i}
\]
(A.II.6)

\[
\frac{\partial P_{r-1}}{\partial \psi_i} = \frac{\partial \Phi}{\partial \psi_i} P_{r-1} \Phi' + \Phi \frac{\partial P_{r-1}}{\partial \psi_i} \Phi' + \Phi P_{r-1} \left(\frac{\partial \Phi}{\partial \psi_i} \right)' + \frac{\partial R}{\partial \psi_i} Q R' + R \frac{\partial Q}{\partial \psi_i} R' + R Q \left(\frac{\partial R}{\partial \psi_i} \right) \quad i = 1, \ldots, k + 1
\]
(A.II.7)

Prediction Error

\[
\frac{\partial f_r}{\partial \psi_i} = Z_r \frac{\partial P_{r-1}}{\partial \psi_i} \quad i = 1, \ldots, k + 1
\]
(A.II.8)

Variance of the Prediction Error

\[
\frac{\partial \nu_r}{\partial \psi_i} = -Z_r \frac{\partial \Phi}{\partial \psi_i} \quad i = 1, \ldots, k + 1
\]
(A.II.9)

Updating Equations

\[9\]

INPES, 101/86
\[
\frac{\partial a_r}{\partial \psi_i} = \frac{\partial a_{r-1}}{\partial \psi_i} + \frac{\partial P_{r-1}}{\partial \psi_i} Z_r f_r^{-1} \nu_r - P_{r-1} Z_r f_r^{-2} \frac{\partial f_r}{\partial \psi_i} \nu_r + P_{r-1} Z_r f_r^{-1} \nu_r \frac{\partial P_r}{\partial \psi_i} i = 1, \ldots, k + 1
\] (A.II.10)

\[
\frac{\partial P_r}{\partial \psi_i} = \frac{\partial P_{r-1}}{\partial \psi_i} - \frac{\partial P_{r-1}}{\partial \psi_i} Z_r f_r^{-1} Z_r P_{r-1} + P_{r-1} Z_r f_r^{-2} \frac{\partial f_r}{\partial \psi_i} Z_r P_{r-1} \nu_r - P_{r-1} Z_r f_r^{-1} Z_r \nu_r \frac{\partial P_{r-1}}{\partial \psi_i} i = 1, \ldots, k + 1
\] (A.II.11)

and the initial conditions are given by:

\[
\frac{\partial a_0}{\partial \psi_i} = 0 \quad i = 1, \ldots, k + 1
\]

\[
\frac{\partial P_0}{\partial \beta} = 0
\]

\[
\frac{\partial P_0}{\partial \rho_r} = \begin{bmatrix} 0 & 0 \\ 0 & \frac{2 \rho_r}{(1 - \rho_r^2)^2} \end{bmatrix}
\]

\[
\frac{\partial P_0}{\partial \rho_r} = \begin{bmatrix} \frac{2 \rho_r}{(1 - \rho_r^2)^2} & \frac{2 \rho_r}{(1 - \rho_r^2)^2} & 0 \\ \frac{2 \rho_r}{(1 - \rho_r^2)^2} & 0 & 0 \\ \frac{2 \rho_r}{(1 - \rho_r^2)^2} & 0 & 0 \end{bmatrix}
\]

APPENDIX III

It is easy to see that

\[
\frac{\partial \nu_r}{\partial \psi_i} = \left[\frac{\partial \nu_r}{\partial \rho_r}, \frac{\partial \nu_r}{\partial \beta}, 0 \right] = \begin{cases} (0, -x_{r1}, 0) & \tau = 1 \\ -(y_{r-1} - x_{r-1} \beta, x_r - \rho_r x_{r-1}, 0) & \tau > 1 \end{cases}
\] (A.III.1)

\[
\frac{\partial f_r}{\partial \psi_i} = \left[\frac{\partial f_r}{\partial \rho_r}, \frac{\partial f_r}{\partial \beta}, 0 \right] = \begin{cases} \left(\frac{2 \rho_r}{1 - \rho_r^2}, 0, 0 \right) & \tau = 1 \\ 0 & \tau > 1 \end{cases}
\] (A.III.3)
Substituting (A.III.1-4) and (2.8-11) into (A.II.1), it follows that:

\[
\frac{\partial l}{\partial \rho_x} = -\frac{\rho_x(y_1 - x'_1 \beta)^2}{\sigma_x^2} + \frac{1}{\sigma_x^2} \sum_{t=2}^{[T]} \left[(y_t - x'_t \beta) - \rho_x(y_{t-1} - x'_{t-1} \beta) \right] (y_{t-1} - x'_{t-1} \beta) \\
+ \frac{\rho_x}{1 - \rho_x^2} \frac{1 - \rho_x^2}{\sigma_x^2} x'_1 (y_1 - x'_1 \beta) + \frac{1}{\sigma_x^2} \sum_{t=2}^{[T]} \left[(y_t - x'_t \beta) - \rho_x(y_{t-1} - x'_{t-1} \beta) \right]^2 \tag{A.III.5}
\]

Substituting (2.8-11) into (A.II.2), it follows that:

\[
\frac{\partial l}{\partial \sigma_x^2} = -\frac{T}{2m\sigma_x^4} + \frac{1 - \rho_x^2}{2\sigma_x^2} (y_1 - x'_1 \beta)^2 + \frac{1}{\sigma_x^2} \sum_{t=2}^{[T]} \left[(y_t - x'_t \beta) - \rho_x(y_{t-1} - x'_{t-1} \beta) \right]^2 \tag{A.III.6}
\]

Substituting (2.8-11) and (A.III.1-4) into (A.II.3), it follows that:

\[
I_{\rho_x \rho_x} = \frac{1}{\sigma_x^2} \sum_{t=2}^{[T]} (y_{t-1} - x'_{t-1} \beta)^2 + \frac{2\rho_x^2}{1 - \rho_x^2} \tag{A.III.7}
\]

\[
I_{\rho_x \beta} = \frac{1}{\sigma_x^2} \sum_{t=2}^{[T]} (x_t - \rho_x x'_t)(y_{t-1} - x'_{t-1} \beta) \tag{A.III.8}
\]

\[
I_{\beta \beta} = \frac{1}{\sigma_x^2} \sum_{t=2}^{[T]} (x_t - \rho_x x'_t)(x_t - \rho_x x_{t-1})' + \frac{1 - \rho_x^2}{\sigma_x^2} (x_1 x'_1) \tag{A.III.9}
\]
Substituting (A.III.1-4) and (2.8-11) into (A.II.4), it follows that:

\[
I_{\rho,\sigma^2} = -\frac{\rho^2}{\sigma^2} (y_1 - x_1' \beta) \\
- \frac{1}{\sigma^2} \sum_{i=2}^{[\frac{T}{\xi}]} [(y_r - x_r' \beta) - \rho \{(y_{r-1} - x_{r-1}' \beta)\} (y_{r-1} - x_{r-1}' \beta)] \tag{A.III.10}
\]

\[
I_{\beta,\sigma^2} = \frac{1 - \rho^2}{\sigma^2} x_1' (y_1 - x_1' \beta) \\
- \frac{1}{\sigma^2} \sum_{i=2}^{[\frac{T}{\xi}]} [x_r - \rho x_r' \beta]' [(y_r - x_r' \beta) - \rho \{(y_{r-1} - x_{r-1}' \beta)\}] \tag{A.III.11}
\]

Under \(H_0 : \rho = 0 \Rightarrow H_0; \rho_* = 0 \), it follows that:

\[
\frac{\partial l}{\partial \rho} (\psi_{H_0}) = 0 \\
\frac{\partial l}{\partial \sigma^2} (\psi_{H_0}) = 0 \\
\frac{\partial l}{\partial \rho_*} (\psi_{H_0}) = \frac{1}{\sigma^2} \sum_{i=2}^{[\frac{T}{\xi}]} \tilde{u}_r \tilde{u}_{r-1} \tag{A.III.12}
\]

Taking plims in (A.III.7-11), and under appropriate regularity conditions on the \(x'(t) \), it follows that:

\[
\text{plim} \left[I_{\rho,\rho_*} - \frac{1}{\sigma^2} \sum_{i=1}^{[\frac{T}{\xi}]} \tilde{u}_r^2 \right] = 0 \\
\text{plim} \left[I_{\beta,\beta} - \frac{1}{\sigma^2} \sum_{i=1}^{[\frac{T}{\xi}]} x_r x_r' \right] = 0
\]

\[
\text{plim} I_{\rho,\rho_*} = 0 \\
\text{plim} I_{\rho,\beta} = 0 \\
\text{plim} I_{\beta,\beta} = 0
\]

It follows that

\[
LM = \left[\frac{1}{\sigma^2} \sum_{i=1}^{[\frac{T}{\xi}]} \tilde{u}_r \tilde{u}_{r-1} \right] \left[\frac{1}{\sigma^2} \sum_{i=1}^{[\frac{T}{\xi}]} \tilde{u}_r^2 \right]^{-1} \left[\frac{1}{\sigma^2} \sum_{i=1}^{[\frac{T}{\xi}]} \tilde{u}_r \tilde{u}_{r-1} \right]
\]

INPES, 101/86

12
but
\[
\left[\frac{1}{\sigma^2} \sum_{i=1}^{\frac{m}{2}} \tilde{u}_i^2 \right] = \frac{T}{m}
\]
then
\[
LM = \left[\frac{T}{m} \right]^2 \left[\frac{T}{m} \right]^{-1} = \left[\frac{T}{m} \right] r_1^2
\]
where
\[
r_1^2 = \frac{\sum_{i=1}^{\frac{m}{2}} \tilde{u}_i \tilde{u}_{i-1}}{\sum_{i=1}^{\frac{m}{2}} \tilde{u}_i^2}
\]

APPENDIX IV

Proof of Proposition II:

Multiplying both sides of (A.I.2) by \(\sum_{j=1}^{m-1} L_j \), it follows that:
\[
(1 - \rho^m B)y_r = (1 - \rho^m)(\sum_{j=0}^{m-1} x'(t - j))\beta + \omega_r \tag{A.IV.1}
\]
where
\[
\omega_r = (\sum_{j=0}^{m-1} (\sum_{i=1}^{m-1} \rho^i L^j) \epsilon(t) \tag{A.IV.2}
\]

Now (A.IV.1) can be rewritten as:
\[
y_r = x_r^* \beta + u_r \tag{A.IV.3}
\]
\[
u_r = \rho_s u_{r-1} + \omega_r \tag{A.IV.4}
\]
where
\[
x_r^* = \sum_{j=0}^{m-1} x(mt - j)
\]
\[
\rho_s = \rho^m
\]
and \(\omega_r \) is given by (A.IV.2).
Using the results of Tiao (1972) or Pereira (1986), (A.IV.4) follows an ARMA(1,1), the expression (3.3), where the AR parameter is ρ_τ and the MA parameter, θ_τ, and the variance of the error term, σ_τ^2, are given by the solution of equation (3.4-6).

APPENDIX V

Derivating (3.9-12) with respect to β, it follows that:

\[
\frac{\partial \nu_\tau}{\partial \beta} = \begin{cases}
-2t_i & \tau > 1 \\
-\left[z_i - \rho_\tau z_{i-1}\right] + \theta_\tau \frac{\partial f_{\tau-1}}{\partial \beta} f_{\tau-1} - \theta_\tau f_{\tau-1} \frac{\partial \nu_{\tau-1}}{\partial \beta} & \tau > 1
\end{cases} \quad (A.V.1)
\]

and

\[
\frac{\partial f_\tau}{\partial \beta} = 0 \quad (A.V.3)
\]

Now using (A.V.3) into (A.V.2), it follows that:

\[
\frac{\partial \nu_\tau}{\partial \beta} = \begin{cases}
-2t_i & \tau = 1 \\
-\left[z_i - \rho_\tau z_{i-1}\right] + \theta_\tau f_{\tau-1} \frac{\partial \nu_{\tau-1}}{\partial \beta} & \tau > 1
\end{cases} \quad (A.V.2)
\]

Now derivating (3.9-12) with respect to ρ_τ, it follows that:

\[
\frac{\partial \nu_\tau}{\partial \rho_\tau} = \begin{cases}
0 & \tau = 1 \\
-\left[z_i - \rho_\tau z_{i-1}\right] - \frac{\partial f_{\tau-1}}{\partial \rho_\tau} f_{\tau-1} \nu_{\tau-1} + \theta_\tau \frac{\partial f_{\tau-1}}{\partial \rho_\tau} f_{\tau-1} \nu_{\tau-1} - \theta_\tau f_{\tau-1} \frac{\partial \nu_{\tau-1}}{\partial \rho_\tau} & \tau > 1
\end{cases} \quad (A.V.4)
\]

and

\[
\frac{\partial f_\tau}{\partial \rho_\tau} = \begin{cases}
\frac{\left[2\theta_\tau + 2\rho_\tau \frac{\partial f_{\tau-1}}{\partial \rho_\tau} + 2\theta_\tau \frac{\partial f_{\tau-1}}{\partial \rho_\tau}\right] (1-\rho_\tau^2)-2\rho_\tau [1+2\rho_\theta + \rho_\tau^2]}{(1-\rho_\tau^2)^2} & \tau = 1 \\
2\rho_\tau \frac{\partial f_{\tau-1}}{\partial \rho_\tau} (1-f_{\tau-1}) + \theta_\tau \frac{\partial f_{\tau-1}}{\partial \rho_\tau} f_{\tau-1} & \tau > 1
\end{cases} \quad (A.V.5)
\]

Derivating (3.9-12) with respect to σ_τ^2, it follows that:

\[
\frac{\partial f_\tau}{\partial \sigma_\tau^2} = \frac{\partial \nu_\tau}{\partial \sigma_\tau^2} = 0
\]

Then under H_0, it follows that:

\[
\frac{\partial \nu_\tau}{\partial \rho_\tau} (\psi_{H_0}) = \begin{cases}
0 & \tau = 1 \\
-\frac{m+1}{m} \left[z_i - \rho_\tau z_{i-1}\right] & \tau > 1
\end{cases} \quad (A.V.8)
\]

INPES, 101/86 14
\[
\frac{\partial f_t}{\partial \rho_t} (\psi_{H_0}) = 0 \quad \forall r \tag{A.V.10}
\]

\[
\frac{\partial v_t}{\partial \beta} (\psi_{H_0}) = \begin{cases}
-z_1 & \tau = 1 \quad \tag{A.V.11} \\
-z_\tau & \tau > 1 \quad \tag{A.V.12}
\end{cases}
\]

\[
\frac{\partial f_t}{\partial \beta} (\psi_{H_0}) = 0 \quad \forall r \tag{A.V.13}
\]

Substituting (A.V.8-13) into (A.II.1), it follows that:

\[
\frac{\partial l}{\partial \beta} (\psi_{H_0}) = 0
\]

\[
\frac{\partial l}{\partial \sigma^2} (\psi_{H_0}) = 0
\]

\[
\frac{\partial l}{\partial \rho_r} (\psi_{H_0}) = \frac{m+1}{m \sigma^2} \sum_{\tau=1}^{[\frac{T}{\tau}]} \bar{u}_\tau \bar{u}_{\tau-1} \tag{A.V.14}
\]

Taking plim's in the expressions for the information matrix and under appropriated regularity conditions on the \(x'(t)\), it follows that:

\[
\text{plim} \left[\tilde{I}_{\rho,\rho} - \left[\frac{m+1}{m} \right] \frac{1}{\sigma^2} \sum_{\tau=1}^{[\frac{T}{\tau}]} \bar{u}_\tau \bar{u}_{\tau-1} \right] = 0
\]

\[
\text{plim} \left[I_{\beta} - \frac{1}{\sigma^2} \sum_{\tau=1}^{[\frac{T}{\tau}]} z_\tau x'_\tau \right] = 0
\]

\[
\text{plim} \tilde{I}_{\rho,\beta} = 0
\]

\[
\text{plim} \tilde{I}_{\rho,\rho} = 0
\]

\[
\text{plim} \tilde{I}_{\beta,\beta} = 0
\]

It follows that

\[
LM = \left[\left[\frac{m+1}{m} \right] \frac{1}{\sigma^2} \sum_{\tau=1}^{[\frac{T}{\tau}]} \bar{u}_\tau \bar{u}_{\tau-1} \right] \left[\left[\frac{m+1}{m} \right] \frac{1}{\sigma^2} \sum_{\tau=1}^{[\frac{T}{\tau}]} \bar{u}_\tau^2 \right]^{-1} \left[\frac{m+1}{m} \frac{1}{\sigma^2} \sum_{\tau=1}^{[\frac{T}{\tau}]} \bar{u}_\tau \bar{u}_{\tau-1} \right]
\]

but

\[
\left[\frac{1}{\sigma^2} \sum_{\tau=1}^{[\frac{T}{\tau}]} \bar{u}_\tau^2 \right] = \frac{T}{m}
\]

15

INPES, 101/86
then

\[LM = \left(\frac{T}{m} \right)^2 r_i^2 \left(\frac{T}{m} \right)^{-1} = \left(\frac{T}{m} \right) r_i^2 \]

where

\[r_i^2 = \frac{\sum_{j=1}^{I} u_r \tilde{u}_{r-1}}{\sum_{j=1}^{I} \tilde{u}_r^2} \]

and \(\tilde{u}_r = y_r - z_i^T \tilde{\beta} \) and \(\tilde{\beta} \) is given by (3.3):
REFERENCES

Textos para Discussão Interna editados a partir de janeiro de 84

II

Nº 75 - "Interação entre Mercados de Trabalho e Razão entre Salários Rurais e Urbanos no Brasil", Gervásio Castro de Rezende, Março 1985, 35 p.

III

IV

O INFES edita ainda as seguintes publicações: Pesquisa e Planejamento Econômico (quadriestral), desde 1971; Literatura Econômica (bimestral), desde 1977; Coleção Relatórios de Pesquisa; Série Textos para Discussão do Grupo de Energia (TDE); Série Monográfica; Série PNPE e Série Estudos de Política Industrial e Comércio Exterior (EPICO).