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SINOPSE
Utilizamos modelos de macrofinanças para estudar a interação entre variáveis macro e
a curva de juros soberana brasileira usando dados diários. Calculamos as
probabilidades de default implícitas do modelo e uma medida do impacto de choques
macro nas probabilidades. Uma extensão da estratégia de identificação de Dai e
Singleton para modelos gaussianos com fatores latentes e observáveis foi descrita de
modo a estimar nossos modelos. Entre as variáveis testadas, VIX é o fator macro mais
importante afetando títulos e probabilidades de default de curto prazo, e a taxa curta
do Federal Reserve (Fed) é o fator mais importante que afeta probabilidades de longo
prazo.

ABSTRACT
We use macro finance models to study the interaction between macro variables and
the Brazilian sovereign yield curve using daily data. We calculate the model implied
default probabilities and a measure of the impact of macro shocks on the
probabilities.

An extension of the Dai-Singleton identification strategy for Gaussian models
with latent and observable factors is described in order to estimate our models.

Among the tested variables, VIX is the most important macro factor affecting
short term bonds and default probabilities and the Fed short rate is the most
important factor affecting the long term default probabilities.
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Impact of Macro Shocks on Sovereign Default Probabilities

Marco S. Matsumura∗

November 30, 2006

Abstract

We use macro finance models to study the interaction between macro variables and the Brazil-
ian sovereign yield curve using daily data. We calculate the model implied default probabilities
and a measure of the impact of macro shocks on the probabilities.

An extension of the Dai-Singleton identification strategy for Gaussian models with latent and
observable factors is described in order to estimate our models.

Among the tested variables, VIX is the most important macro factor affecting short term
bonds and default probabilities and the FED short rate is the most important factor affecting the
long term default probabilities.

1 Introduction

Credit risk is an important component of the yield curve of emerging countries. It is linked to some
payment obligation and the possible failure of the obligor to honour it, thus affecting the required yield
rate a government will face in order to finance itself. This measure will also be of great importance for
emerging market firms, since the foreign financing will typically contain the country risk, so that firm
borrowing rates are usually higher than sovereign rates. We are thus led to ask the following questions:
What are the factors most affecting the sovereign yield rates? Which variables causes greater impact
on default probabilities? We present an empirical investigation using affine term structure models
with macro factors and default motivated by such questions.
There are two main lines of credit risk models, the structural and the reduced. In all models, the

price of the defaultable bond will depend on the probability of default and on the expected recovery
rate upon default. Giesecke (2004) provides a short introductory survey. Black and Scholes (1973)
and Merton (1974) initiated the field by proposing the first structural models using option theory.
Black and Cox (1976) introduced the basic structural model in which default occurs at the first time
the process of the firm’s assets crosses a given a default barrier. Many articles were built extending
Black and Cox model. More recently, second generation models were introduced by Leland (1994) and
Leland and Toft (1996) in which the firm’s incentive structure is modeled to determine the default
barrier endogenously, obtaining as a result its optimal capital structure. Default occurs when the
structure of incentives suggests that it is optimal to the issuer to default or when the payment is
impossible. This happens at the time the value of the shares falls to zero.
However, the cited articles treat the corporate credit risk case. The sovereign credit risk differs

markedly from the corporate. Some reasons are listed bellow.

• A sovereign debt investor may not have recourse to a bankruptcy code at the default event.
∗Instituto de Pesquisa Economica Aplicada. Email: marcom@ipea.gov.br. Address: Av. Presidente Antônio Carlos,

51 - 17 andar, Sala 1715, 20020-010 - Rio de Janeiro - RJ, Brasil Tel: +55 21 3515-8533 - Fax: +55 21 2240-1920.
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• Sovereign default can be a political decision. There exists a trade-off between the costs of making
the payments and the costs of reputation, of having the assets abroad seized or of having access
to international commerce impeded.

• The same bond can be renegotiated many times. Some contracts have cross-default or collective
action clauses. Assets in the country cannot be used as a collateral.

• The government can opt for defaulting on internal or external debt.
• Also, one must take into account the role played by key variables such as exchange rates, fiscal
dynamics, reserves in strong currency, level of exports and imports, GDP, inflation and many
other macro variables.

Therefore, constructing a structural model for the case of a country is a more delicate question. It
is not obvious how to model the incentive structure of a government and its optimal default decision,
or what “assets” could be seized upon default. Moreover, post-default negotiation rounds regarding
the recovery rate can be very complex and uncertain.
Not surprisingly, then, it is difficult to find structural model papers in the sovereign context.

We opt for using reduced models, where the time of default is not directly modeled. It is a totally
inaccessible stopping time which is triggered by the first jump of a given exogenous process with
default intensity λ. A totally inaccessible stopping time is defined in the following. A predictable
stopping time τ is one for which there exists a sequence of announcing stopping times τ1 ≤ τ2 ≤ . . .
such that τn < τ and lim τn = τ for all ω ∈ Ω with {τ(ω) > 0}. In the structural models, if the
evolution of the assets follows a Brownian diffusion, then the time of default is a predictable stopping
time. A stopping time is totally inaccessible if no predictable stopping time τ 0 can give any information
about τ : P[τ = τ 0 < ∞] = 0. Thus, in the case of the reduced model, the default always comes as a
“surprise”. This characteristic adds more realism to the modelling: the MinFins, Russian sovereign
bonds, had a price drop of around 80% in the days immediately following the announcement of the
default of the Russian domestic bond GKO in 1998.
Lando (1998) and Duffie and Singleton (1999) developed versions of reduced models in which

the default risk appears as an additional instantaneous spread in the pricing equation. It has the
advantage of being able to take an affine form. Duffie and Kan (1996) introduced the largely used
family of affine models, offering a good compromise between flexibility and numerical tractability.
Duffie et al (2003) analyzes the case of the Russian bonds extending the reduced model to include

the possibility of multiple defaults (or multiple “credit events”, such as restructuring, renegotiation
or change of regime). After estimating the model for the risk free reference curve on a first stage and
then for defaultable Russian sovereign bonds on a second, they use model implied spreads to examine,
for instance, what are the determinants of the spreads, what is the degree of integration between
different Russian bonds and what is the correlation between the spreads and the macroeconomic
series. Another paper applying reduced model to emerging markets is Pagès (2001). However, their
models only use latent variables. Since macro factors are not explicitly inserted as state variables,
they can only affect indirectly the latent factors. Also, the impact of changes of bond yields in macro
factors cannot be measured inside the model. Duffie et al (2003) estimated the model in two steps:
first the parameters relative to the FED yield curve, then those of the Russian yield curve.
Ang and Piazzesi (2003) were the first to estimate a term structure model with macro factors

alongside latent factors in a discrete time affine model. They incorporate different Taylor rules into
the short rate used in the no arbitrage pricing. In their model, the macro factors affect the entire
yield curve. However, the interest rates do not affect the macro factors, which means the monetary
policy is ineffective. They estimate in 2 steps: first the macro dynamics and then the latent dynamics
conditional on the macro factors. Ang et al (2005) estimate another specification without this draw-
back using Monte Carlo Markov Chain. A Macro Finance literature has quickly emerged since their
work (see Diebold et al 2005).
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Amato and Luisi (2005) use a three-step procedure in a model with macro factors and default
risk, where the reference curve, then the macro parameters and finally the spreads are estimated in
a conditional way. The paper studies the corporate case. However, this has again the restrictive
condition that the macro factors are not affected by the yield curve. Also, the conditioning the
estimation in more than one step may lead to a sub-optimal solution.
Our model incorporates the advances brought by the above lines of research to study the impact of

macro factors on a defaultable term structure. We provide the comparison among many trial models
in the search of the macro factors most influencing the credit spreads and default probabilities. Also,
using Ang and Piazzesi’s approach, we can use impulse response and variance decomposition techniques
to analyze the direct influence of observable macro factors on prices and default probabilities. In pure
latent models, the unobservable factors are abstractions that can, at best, be interpreted as geometric
factors summarizing the yield curve movements, as seen in Litterman and Scheinkman (1991).
However, before estimating the parameters, one must choose an identification strategy. Not all

parameters of the multifactor affine model can be estimated, since there are linear operators on the
parameter space that leave the short rate, and thus the yields, fixed. We propose an identification
based on Dai and Singleton (2000) that exactly identifies the model. It is also used in Matsumura
and Moreira (2006), which studies the Brazilian domestic market. Ang et al (2005) and Dai and
Philippon (2004) present sub-identified models whose parameters can be arbitrarily rotated preserving
the likelihood. Another article addressing identification of models with observable and latent factors
is Pericoli and Taboga (2006). They propose an exact identification, but it is required that the mean
reverting matrix Φ of the process driving the state factors have real and distinct eigenvalues.
We choose to use continuous-time modeling with high frequency Brazilian and US data because of

the limitations on the size of historical series. When using Brazilian data, one must take into account
that frequent changes of regime have occurred until recently, such as a change from fixed to floating
exchange rate in a currency crisis in January 1999.
Our main model contain 5 state variables, one latent for the FED, one for an external macro

factor, one for an internal macro factor, and two latent for the Brazilian sovereign yield curve. Macro
variables tested are: 1) FED short rate, FED long rate, FED slope, VIX index of implied volatility of
options on Standard & Poor index, exchange rate, Brazilian stock exchange Bovespa index, Brazilian
future exchange interest rate swaps (short-term, long term, slope of the term).
Therefore, our objectives include: 1) analyzing the determinants of the term structure of the Brazil-

ian sovereign interest rates; 2) measuring the forecasting performance of the models; 3) calculating
default probabilities and measure the impact of macro shocks on them; 4) proposing an identification
for affine models with macro factors.
We report that: 1) VIX and FED strongly affects the default probabilities in the short term and

in the long term, respectively. 2) VIX has strong effect on Brazilian sovereign yields, more than
any investigated domestic macro indicator. 3) Since the FED short rate affects more the default
probabilities than the Brazilian domestic short rate, US monetary policy can cause more impact on
the term structure of default probabilities than Brazilian monetary policy.

2 Model

2.1 Pricing

We derive the pricing equations in the affine model (Duffie and Kan, 1996) context. Fix the probability
space (Ω,F, P ) and assume no arbitrage. The price at time t of a zero coupon bond paying 1 at the
maturity date t+ τ is

P (t, τ) = EQ
·
exp

µ
−
Z t+τ

t

rtdt

¶
| Ft

¸
. (1)
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The conditional expectation is taken under the equivalent martingale measure Q, t+τ is the maturity
date, rt is the stochastic instantaneous rate and Ft is the filtration at time t.
The state of the economy is represented by a vector Xt ∈ Rd. In affine models, one assumes that

the short rate is an affine function of the state vector:

rt = δ0 + δ1 ·Xt. (2)

The state vector Xt follows a Gaussian process with mean reversion, which is a particular case of
an affine dynamics (Duffie et al, 2001), and a continuous-time equivalent of a Vector Autoregression
(VAR). Under the objective P-measure,

dXt = K(ξ −Xt)dt+Σdwt. (3)

The d×d and d×1 parametersK and θ represent the mean reversion coefficient and the long term mean
short rate, and ΣΣ| is the instantaneous variance-covariance matrix of the d-dimensional standard
Brownian shocks wt.
The risk premium is also affine in the state variables,

λt = λ0 + λ1 ·Xt. (4)

Then, under the martingale measure Q, using Girsanov, we have

dXt = K (ξ −Xt)dt+Σdwt , (5)

where dwt = dwt + λtdt, wt being a standard Q-Brownian motion, and

K = K +Σλ1, ξ = K −1(Kξ − Σλ0). (6)

The price of the bond can be found using multifactor Feyman-Kac. If

EQ
·
exp

µ
−
Z t+τ

t

r(Xu)du

¶
| Ft

¸
= v(Xt, t, τ), (7)

then v(x, t, τ) must satisfy the following PDE:

Dv(x, t, τ )− r(x)v(x, t, τ) = 0, (8)

v(x, t, 0) = 1,

where the operator D is given by

Dv(x, t, τ) := vt(x, t, τ ) + vx(x, t, τ ) ·K (ξ − x) +
1

2
tr[ΣΣ|vxx(x, t, v)]. (9)

The solution is exponential affine on the state variables:

v(t, τ , x) = eα(τ)+β(τ)·x, (10)

where

β0(τ) = −δ1 −K |β(τ) (11)

and
α0(τ) = −δ0 + ξ |K |β(τ) +

1

2
β(τ)|ΣΣ|β(τ). (12)
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Calculation of the explicit solution of the above system of ODE’s is only possible in some special cases,
such as when we have a diagonal K. However, Runge-Kuta numerical integration can solve equations
(11) and (12) efficiently.
As a result, the yield is given by an affine function of the state variables, Y (t, τ) = −α(τ)

τ − β(τ)
τ ·Xt.

Define A(τ) = −α(τ)
τ and B(τ) = −β(τ)

τ , then

Y (t, τ) = A(τ) +B(τ) ·Xt. (13)

Stacking the equations for the K yield maturities we arrive at a more concise expression

Yt = A+BXt, (14)

where Yt = (Y (t, τ1), ..., Y (t, τK))| . The factor loadings A and B will depend on the set of parameters

Ψ = (δ0, δ1,K, θ, λ0, λ1,Σ), (15)

that need to be estimated according to the data being used.

2.2 Likelihood

The log-likelihood is the log of the density function of the sequence of observed yields (Yt1 , ..., Ytn).
To calculate it we must first find the transition density of Xti |Xti−1 , integrating the equation (3):

Xti|ti−1 = (1− e−K(ti−ti−1))Xti−1 + e−K(ti−ti−1)θ +
Z ti

ti−1
e−K(ti−u)Σdwu. (16)

Using Ito’s isometry formula, it follows that the stochastic integral term above is Gaussian with mean

zero and variance

E

"Z ti

ti−1
e−K(ti−u)Σdwu

#2
=

Z ti

ti−1
e−K(ti−u)ΣΣ|(e−K(ti−u))|du. (17)

This means that Xti|ti−1 ∼ N(µi, σ
2
i ) , where

µi = (1− e−K(ti−ti−1))Xti−1 + e−K(ti−ti−1)θ, (18)

and

σ2i =

Z ti

ti−1
e−K(ti−u)ΣΣ|(e−K(ti−u))|du. (19)

Since dt = ti−ti−1is small, since daily frequency is used, a very good approximation to the integral
(17) is

σ2i ' e−KdtΣΣ|(e−Kdt)|dt. (20)

Thus,
Xti|ti−1 = µi + σi N(0, I), (21)

with
σi = e−KdtΣ

√
dt. (22)
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Now suppose the vectorsXt and Yt have the same dimension, that is, the number of yield maturities
equals the number of state variables. Then, we can invert the linear equation (14) and find Xt as a
function h of Yt:

Xt = B−1(Yt −A) = h(Yt). (23)

Using change of variables, it follows that

log fY (Yt1 , ..., Ytn ;Ψ) = log fX(Xt1 , ...,Xtn);Ψ) + log |det∇h|n (24)

= log
nY
i=2

fXti
|Xti−1

(Xti ;Ψ) + |det∇h|n (25)

=
nX
i=2

log fXti
|Xti−1

(Xti ;Ψ) + log |det∇h| (26)

2.3 Chen-Scott

The procedure above restricts the number of yield maturities that can be used, because of the inversion
(23) used to obtain the model implied state vector. If we want to use more data available, that
becomes a problem, since the additional yields make the model singular. One solution is to follow
Chen and Scott (1993), and add measurement errors to some yields. We choose this method in our
continuous time versions. Let d and K be the number of state variables and of maturities. We select
d maturities out of K to be priced without error. Let Y 1

t represent the set of those yields at a given
time. The other yields are denoted by Y 2

t , and they will have independent normal measurement errors
u(t, τ) ∼ N(0, σ2u(τ)).We have then·

Y 1
t

Y 2
t

¸
=

·
A1

A2

¸
+

·
B1 0
B2 1

¸ ·
Xt

ut

¸
, (27)

where A = [A1, A2]T and B = [B1, B2]T correspond to the maturities priced with and without errors,
respectively. Call h the function that inverts the equation (27). The log likelihood becomes

log fY (Yt1 , ..., Ytn ;Ψ) = log fX(Xt1 , ...,Xtn);Ψ) + log fu(ut1,...,utn) + log |det∇h|n (28)

= log
nY
t=2

fXt|Xt−1(h(Xt);Ψ) + log
nY
t=2

fu(ut) + |det∇h|n (29)

=
nX
t=2

(log fXt|Xt−1(h(Xt);Ψ) + log fu(ut)) + (n− 1) log |detB1|. (30)

Alternatively, a Kalman Filter could be used, with all maturities having measurement errors.

2.4 Adding Default

An important component in the term structure of emerging countries is the spread due to the possibility
of default of the bond. We use Duffie and Singleton’s version of the reduced model of credit risk to
study credit spreads. The price PD of a defaultable bond is

PD(t, τ) = EQ

"
1[T>t+τ ] exp

µ
−
Z t+τ

t

rtdt

¶
+WT 1[T≤t+τ ] exp

Ã
−
Z T

t

rtdt

!
|Ft
#
. (31)
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The first part is what the bond owner receives if the maturity time comes before the default time T ,
a stopping time. In case of default, the investor receives the random variable WT at the default time.
If T is doubly stochastic with intensity λ, if the recovery upon default is given by WT = (1− lT )PT− ,
where l(t) is the loss rate, and if other technical conditions are met, Lando (1998) and Duffie and
Singleton (1999) prove that

PD(t, τ) = EQ
·
exp(−

Z t+τ

t

(rt + st)dt)|Ft
¸
, (32)

where st = ltλt is the spread due to the possibility of default.
We explain briefly the concept of doubly stochastic stopping time (see Schönbucher, 2003, Duffie,

2001). Define N(t) = 1[T≤t] the associated counting process. It can be shown that N(t) is a sub-
martingale. Applying the Doob-Meyer theorem, we know there exists a predictable, nondecreasing
process A(t) called the compensator of N(t). One property of the compensator is to give information
about the probabilities of the jump time. The expected marginal increments of the compensator dA(t)
is equal to the probability of the default occurring in the next increment of time:

E [A(t+∆t)−A(t)|Ft] = E [N(t+∆t)−N(t)|Ft] (33)

= P [N(t+∆t)−N(t) = 1|Ft] . (34)

An intensity process λt for N(t) exists if it is progressively measurable and non negative, and if
A(t) =

R t
0
λ(s)ds.It turns out, under regularity conditions, that

λ(t) = lim
∆t→0

1

∆t
P [T ≤ t+∆t|T > t]. (35)

So, λ(t) represents the evolution of the instantaneous probability of defaulting by T + t if default has
not occurred up to T .
Now, we derive the price a defaultable bond in our affine context. We assume that the instantaneous

spread is an affine function of the state variables,

st = δs0 + δs1 ·Xt. (36)

The state vector Xt is extended incorporating additional state variables relative to the defaultable
yields, but continue to follow a mean reversion Gaussian process

dXt = K(θ −Xt)dt+Σdwt. (37)

The discount rate is
Rt = rt + st = δr0 + δs0 + (δ

r
1 + δs1) ·Xt = R(Xt). (38)

If the risk premium process is affine too,

λst = λs0 + λs1 ·Xt, (39)

the price of the defaultable bond will be exponential affine,

PD(t, τ) = exp(αD(τ) + βD(τ) ·Xt), (40)

with αd and βd given by solutions of Riccati equations:

βD(τ)

dτ
= −(δr1 + δs1)−K TβD(τ), (41)

αD(τ)

dτ
= −(δr0 + δs0)−K T θ TβD(τ) +

1

2
βD(τ)TΣΣTβD(τ). (42)
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Thus, we have
Y D(t, τ) = AD(τ) +BD(τ) ·X(t), (43)

where AD(τ) = −αD(τ)
τ , BD(τ) = −βD(τ)

τ , or, piling the equations,

Y D
t = AD +BD ·Xt. (44)

The likelihood function turns out to be equal to the previous case, except by the increased dimen-
sion. Duffie at al (2003) opted to make a 2 step maximization in which the reference curve parameters
are estimated first, following the estimation of the yield spread curve parameters conditional on the
estimated parameters. They assumed a “triangular” form for the dynamics of the state variables.
The American short rate is affected the Russian short rate, but not vice-versa. We use the same idea,
observing that a one step procedure could be used (as is explained later), but would increase the
computational complexity. Let Xt = (X1

t ,X
1
t ), where X

1
t and X2

t denote the reference yield curve
and the emerging market yield curve state vectors, respectively. For example, in the dynamics bellow,·

dX1
t

dX2
t

¸
=

·
K11 0
K21 K22

¸µ·
θ1

θ2

¸
−
·
X1
t

X2
t

¸¶
dt+

·
Σ11 0
Σ21 Σ22

¸
dwt, (45)

·
λ1t
λ2t

¸
=

·
λ10
λ20

¸
+

·
λ11
λ21

¸
·
·
X1
t

X2
t

¸
, (46)

the parameters Ψ = (K11, θ1, λ10, λ
1
1,Σ

11) are estimated in a first round, and then the other ones
conditional on Ψ.

2.5 Adding Macro Factors

To incorporate macro factors, we extend our state vector of our economy to include observable macro
variables Mt. Call the latent variables by θt. Then,

Xt = (Mt, θt). (47)

We follow the approach of Ang and Piazzesi (2002). The short rate will be a combination of a
Taylor Rule and an affine model:

rt = δ0 + δ11 ·Mt + δ12 · θt. (48)

The above specification allows the possibility of studying the inter-relations between macroeconomic
questions, such as monetary policy, and finance problems, such as derivative pricing. Also, the affine
tractability is completely retained. The same calculations as before lead to

Y (t, τ) = A(τ) +Bo(τ) ·Mt +Bu(τ) · θt. (49)

The likelihood function is calculated using again the Chen and Scott inversion procedure. Some
maturities (Y 2

t ) will have measurement errors ut. Note that Mt

Y 1
t

Y 2
t

 =
 0

A1

A2

+
 1 0 0

Bo 1 Bu 1 0
Bo 2 Bu 2 1

 Mt

θt
ut

 . (50)

Denote by h the function from the state (Xt, ut) vector to (Xo
t , Yt, Y

2
t ). One obtains X

u
t inverting

on Y 1
t :

Xu
t = (B

u 1)−1(Y 1
t −A1 −Bo 1 ·Mt). (51)
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Then

log fY (Yt1 , ..., Ytn ;Ψ) = log fX(Xt1 , ...,Xtn);Ψ) + log fu(ut1,...,utn) + log |det∇h|n (52)

= log
nY
t=2

fXt|Xt−1(Xt;Ψ) + log
nY
t=2

fu(ut) + |det∇h|n (53)

= −(n− 1) log |detBu 1|+
nX
t=2

log fXt|Xt−1(Xt;Ψ) + log fu(ut), (54)

as before.
In a model in which the macro factors are not affected by the yield curve like Ang and Piazzesi

(2003), the parameters are also distributed in a triangular form such as in equation (45), so that the
macro factors can be estimated separately in a first step.
Our estimations, like Ang et al (2005), allow macro factors and the yield factors to fully interact.

Also, we use a two step estimation only when we want to determine the reference curve. We assume
that the US yield curve is not affected by the Brazilian yield curve and that can be estimated in a
first step. However, we show bellow how to implement a one-step estimation.
Observe that a model with macro factors can substitute a reduced form model if we look to the

US yield curve as macro factors influencing the emerging curve. However, the interpretation of the
spread as the instantaneous expected loss given by the Duffie and Singleton (1999) model will be lost,
together with the calculation of model implied default probabilities of the next subsection.

2.6 Default Probabilities

The term structure of default probabilities is given by

Pr(t, τ) = EP
·
exp

µ
−
Z t+τ

t

stdt

¶
|Ft
¸
. (55)

Using the same technique as in the pricing case, one arrives at

Pr(t, τ) = exp(αPr(τ) + βPr(τ) ·Xt), (56)

with αPr and βPr given by solutions of Riccati equations:

βPr(τ)

dτ
= −δs1 −KTβPr(τ), (57)

αPr(τ)

dτ
= −δs0 −KT θTβPr(τ) +

1

2
βPr(τ)TΣΣTβPr(τ). (58)

Note that the objective measure is used. Thus, the log of the probabilities is again an affine function
of the state variables,

log Pr(t, τ) = αPr(τ) + βPr(τ) ·X(t). (59)

2.7 State Dependent Premium Parameters

We tested one version of the model in which the risk premia depended on a slowly varying macroeco-
nomic fundamental, the Debt/GDP.

λt(Ft) = λ0(Ft) + λ1(Ft) ·Xt. (60)
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2.8 IRF and Variance Decomposition: continuous time version

Impulse response functions and variance decompositions are used to analyze the impact of macro
shocks on yields and default probabilities. The time impulse response function in discrete time is

Xt = Σεt +ΦΣεt−1 +Φ2Σεt−2 +Φ3Σεt−3 + ... (61)

Since Yt = A+BXt, the response of the yield curve to the shocks is

BΣεt BΦΣεt BΦ2Σεt BΦ3Σεt ...
t+ 0 t+ 1 t+ 2 t+ 3 ...

. (62)

In continuous time, we have

Xti|ti−k = e−K(ti−ti−k)Xi−k +
k−1X
l=0

Z ti−k+l+1

ti−k+l
e−K(ti−u)Σdwu. (63)

Using the approximation (17), it follows that the response of Xt to a shock εt in a interval of time of
dt is

Σ
√
dtεt e−KdtΣ

√
dtεt e−2KdtΣ

√
dtεt e−3KdtΣ

√
dtεt ...

t+ 0 t+ 1 t+ 2 t+ 3 ...
(64)

The response of the yield Yt is

BΣ
√
dtεt Be−KdtΣ

√
dtεt Be−2KdtΣ

√
dtεt Be−3KdtΣ

√
dtεt ...

t+ 0 t+ 1 t+ 2 t+ 3 ...
, (65)

and the response of the log of the survival probability log Pr(t, τ) is

βPrΣ
√
dtεt βPre−KdtΣ

√
dtεt βPre−2KdtΣ

√
dtεt βPre−3KdtΣ

√
dtεt ...

t+ 0 t+ 1 t+ 2 t+ 3 ...
. (66)

In discrete time, the Mean Squared Error of the s-periods ahead error Xt+s −EXt+s|t is

MSE = ΣΣ| +ΦΣΣ|Φ| +Φ2ΣΣ|(Φ2)| + ...+ΦsΣΣ|(Φs)| . (67)

The contribution of the j-th factor to the MSE of Xt+s will be then

ΣjΣ
|
j +ΦΣjΣ

|
jΦ

| +Φ2ΣjΣ
|
j (Φ

2)| + ...+ΦsΣjΣ
|
j (Φ

s)| , (68)

while the j-th factor contribution to the MSE of Yt+s is

BΣjΣ
T
j B

| +BΦΣjΣ
|
jΦ

|B| +BΦ2ΣjΣ
|
j (Φ

2)|B| + ...+BΦsΣjΣ
|
j (Φ

s)|B| . (69)

In continuous time, it turns out that the s-period ahead MSE of is the integral:

MSE =

Z t+s

t

e−K(t+s−u)ΣΣ|(e−K(t+s−u))|dt (70)

Hence, the contribution corresponding to the j-th factor in the variance decomposition of Xt+s, Yt+s
and log Pr(t, τ) at time t are R t+s

t
e−K(t+s−u)ΣjΣ

|
j (e
−K(t+s−u))|dt,

B|
³R t+s

t
e−K(t+s−u)ΣjΣ

|
j (e
−K(t+s−u))|dt

´
B

(βPr)|
³R t+s

t
e−K(t+s−u)ΣjΣ

|
j (e
−K(t+s−u))|dt

´
βPr.

(71)
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3 Identification
The complete set of parameters are distributed as follows. The number of state variables is d, of yield
maturities is m, and of latent variables is n.

ξ| , ξ∗| ∈ Rd, σ|u ∈ Rm−n,Σ =
µ
ΣMM ΣMθ

ΣθM Σθθ

¶
∈ Rd×d (72)

K =

µ
KMM KMθ

KθM Kθθ

¶
,K∗ =

µ
K∗MM K∗Mθ

K∗θM K∗θθ

¶
∈ Rd×d

In order to identify the model, we extend the canonical identification of Dai and Singleton (2000)
for the case with observable factors. In the appendix, we show that if we set ξθ = 0, Σθθ = I
(the identity matrix), ΣMθ = 0, and impose that Kθθ, Σθθ and ΣMM are lower triangular, then the
model is exactly identified. We subtract the sample mean from the macro factors, which allow us to
make ξM = 0 and so ξ = 0. It can be shown that Ang et al (2005) and Dai and Philippon (2004)
models are not fully identified. On the other hand, others authors such as Hördahl et al (2004) and
Amato and Luisi (2005) use over-identifying restrictions that are not motivated by economic reasons.
Pericoli and Taboga (2006) correctly points out the way to achieve an exact identification. However,
their identification requires that K have real and distinct eigenvalues, whereas ours do not make any
assumption. Actually, there are many more identifications, and it is not clear how to choose among
the possibilities. Matsumura and Moreira (2006) use the same identification proposed here to study
the Brazilian domestic term structure.
Invariant transformations on the parameter space can change the impulse response functions of the

latent factors arbitrarily. And if the model is sub-identified, many sets of parameters can be found for
the same specification and data. Figures 16, 17 and 18 show an actual example of a model estimated
with one latent and one macro factor, using FED data and VIX as the macro factor. The invariant
transformation has two degrees of freedom. We estimated thrice the same specification with only
one degree of freedom fixed, each time from a different starting vector, and each maximization was
carried out successfully and arrived at the same maximal value. Then, we calculated the corresponding
impulse response function. It is clear from the pictures that the response of the FED latent factor to
a VIX impulse is varies arbitrarily.
However, when we are interested in models properties with respect to observable factors, the choice

of the specification does not matter. It can be shown that the invariant transformations preserve the
likelihood and the impulse response functions of the yield. The impact of a macro shock on the yield
curve should be the same for all specifications, leaving aside numerical issues.
We assume that the state factors have a given intertemporal causality ordering in Σ as in the

VAR literature. The FED rate is always the more exogenous factor, followed by the VIX, the domestic
macro factors and the latent factors.
We did impose a slight super identifying restriction because our K∗θθ is also lower triangular.
Summing up, we have:

Σ =

µ
ΣMM 0
0 I

¶
, ξ = 0, and Kθθ,K

∗
θθ,ΣMM lower triangular. (73)

A especial case is obtained when we set KMθ = K∗Mθ = 0, which is called macro-to-yield, since
the macro factors affect but are not affected by the financial latent factors. Another case is the
yield-to-macro, in which KθM = K∗θM = 0. Here, yield curve affect macro factors but not vice-versa
in the transition equation dXt = K(ξ −Xt)dt + Σdwt. However, macro factors still affect the yield
curve through the short rate equation, rt = δ0 + δ1 ·Xt. The two restricted specifications are called
unilateral, while the unrestricted is called bilateral.
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We estimated 3 families of increasing difficulty specifications: A) Macro-to-yield models with one
macro factor and two latent factors for the Brazilian yield curve; B) Macro-to-yield models with one
macro factor, one FED latent factor, and two Brazilian latent factors; and C) Bilateral models with
two macro factors, one FED and two Brazilian latent factors.

4 Estimation

The parameters are found maximizing the log-likelihood with respect to the parameters given the
series of yields. The maximum likelihood estimation produces asymptotically consistent, non-biased
and normally distributed estimators. Let L = log fY . When T →∞, ψ̂ → ψ a.s.,

T
1
2 (ψ̂ − ψ)→ N(0,Ω) in distribution, (74)

where

Ω−1 = E

Ã
∂L(Y ;ψ)

∂ψ

∂L(Y ;ψ)
T

∂ψ

!
= −E

µ
∂2L(Y ;ψ)

∂ψ2

¶
(75)

using the information inequality. Note that to calculate Ω we would have to know the true parameters.
An estimator for Ω−1 is the empirical Hessian

Ω̂−1 := − 1
n

nX
t=1

Ã
∂2Lt(Y ; ψ̂)

∂ψ2

!
,

where Lt represents the likelihood of the vector with t elements. More details can be found in Davidson
and Mackinnon (1993, Chapter 8).
We calculate the confidence intervals for the parameter estimations using equation the empirical

Hessian and the Central Limit Theorem. If the number of observations n is large enough, then the
variance of ψ̂ − ψ will be given by the diagonal of N(0,Ω/n).Alternatively, one could obtain the
confidence interval via simulation.
Our estimation strategy consisted in may trial optimizations using Matlab. To deal with problem

of multiple local maxima, we started with the simpler macro-to-yield models with less parameters,
choosing different starting points in the numerical optimization. The models with higher dimensions
used parameters of sub-models as starting points when possible. For example, the FED 1D + VIX
+ BR 2D model used some parameters of the VIX + BR 2D model. Then, new trials from other
random vectors were conducted and compared. The maximal result was then chosen. Although this
procedure may be path-dependent, the "curse of dimensionality" does not allow one to use a grid of
random starting points.

4.1 Data

We use the constant maturity zero-coupon term structure from BM&F (the Brazilian Futures ex-
change) interest rate swaps, the FED constant maturity zero-coupon yield curve, the constant ma-
turity zero-coupon term structure of spreads from Bloomberg, the Chicago Board Options Exchange
Volatility Index - VIX -, created from S&P 500 index options implied volatilities, the Brazilian Real/US
dollar exchange rate and Bovespa index of the Brazilian Stock Exchange most traded firms, and finally
the Brazilian Government Debt over GDP.

The sample used for the estimation begins on February 17th, 1999, and ends on September 15th,
2004, comprising 1320 days. More 200 days of available data, finishing on July 21st, 2005, were

12



Figure 1: Brazilian domestic and sovereign zero coupon yield curve, and FED zero coupon term
structure.
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Figure 2: The option implied volatility index VIX, the log of the Brazilian RS$/US$ exchange rate,
the log of the Bovespa Stock Exchange Index, and the Government Debt over the GDP.
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separated for testing the forecasting performance. The maturities used in the FED and the sovereign
Brazilian yield curve are the same: {3m, 6m, 1y, 2y, 3y, 5y, 10y, 20y}. We choose 3m and the 5y as the
yield maturities priced without without measurement errors in the Chen-Scott inversion. We took the
log of the exchange rate and of the Bovespa index, since our model is linear on the state variables. The
Debt series have yearly frequency, and was used only in the model with variable premium parameters.

5 Results

5.1 Macro-to-yield without default

We begin presenting and comparing the simplest specification, whose main utility will be to the
select macro factors to be used as state variables in the other models. The trial models have 3 state
variables, X = (M, θ1, θ2), one macro and two latent, characterized by the macro-to-yield dynamics.
The following macro variables are used: 1) VIX, 2) BR Real/US Dollar exchange rate, 3) Bovespa,
4) BM&F 1-month yield, 5) BM&F 3-years yield and 6) BM&F slope = 3y - 1m yields, 7) FED 1-
month yield, 8) FED 10-years yield and 9) FED slope=10y - 1m yields. We present in Table 1 A) the
log-likelihood divided by the number of observations, B) the number of parameters, C) the in-sample
adjustment and D) the out-of-sample forecasting performance, or Theil-U, E) the correlation between
the latent factors and the sovereign level and slope, and F) the mean of the measurement errors in
basis points.
The definitions of the adjustment and Theil-U are: the standard deviation, of a 1-month forecasting

error of selected maturities, normalized by the standard deviation of a model that follows a random
walk, measured in-sample or out-of-sample, respectively.:

Adjustment, Theil-U =

ÃP
t(Yt − bYt|t−21)2P
t(Yt − Yt−21)2

! 1
2

. (76)

The out-of-sample forecasting performance was measured using the last 200 days of the sample.
Bellow, the results of the Macro 1D unilateral models are shown.

Table 1.
Summary of Macro 1D unilateral + BR 2D models.

VIX EX Bove bmf1m bmf3y bmfsl fed1m fed10y fedsl
LL/T 44.66 44.25 44.25 44.75 44.79 44.95 47.52 47.46 47.07
#Par 26 26 26 26 26 26 26 26 26
M(In) 1.14 1.04 1.10 1.03 1.03 1.09 1.04 1.03 1.06
TU3m 2.02 0.76 2.58 2.51 2.50 6.00 2.16 2.15 2.21
TU1y 1.54 1.27 2.77 2.48 2.41 4.05 2.32 2.71 2.26
TU5y 1.37 0.96 2.03 1.33 1.31 3.98 1.27 1.75 1.05
TU10y 2.85 3.73 1.39 2.86 2.88 5.24 2.13 2.37 2.65
c(θ1,s) −0.20 −0.37 −0.29 −0.59 −0.56 −0.57 −0.66 −0.69 −0.61
c(θ1,l) −0.39 −0.18 −0.30 0.07 0.02 0.04 0.17 0.21 0.10
c(θ2,s) −0.80 −0.90 −0.89 −0.58 −0.59 −0.83 −0.58 −0.40 −0.59
c(θ2,l) 0.99 0.83 0.98 0.94 0.94 1.00 0.94 0.84 0.94
M(σu) 72 88 74 82 83 77 82 81 83

The results show that:
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1. The in-sample adherence and the out-of-sample forecasting performance of the specifications are
similar.

2. There is a good fitting of the model to the data, with a mean error around 80 basis points.

3. The monetary factor θ2 is highly correlated to the level of the yield curve. Except for the first
3, θ1 is highly correlated to the slope.

4. The higher likelihood of the FED specifications can be attributed to better adjustment of FED
in the transition equation Xt|Xt−1, or to the greater information brought by the FED rates.

5. The models show low forecasting performance for the majority of the maturities.

Next table measures the proportion the macro factors explain in the variance decompositions for
forecast horizons of {1m, 9m, 18m) ahead for the {3m, 3y, 20y}-yields.

Table 2.
Variance decomposition of yields. Macro 1D unilateral + BR2D models.
Hor Yi VIX EX Bove bmf1m bmf3y bmfsl fed1m fed10y fedsl
1m 3m 0.15 0.07 0.01 0.00 0.00 0.16 0.00 0.00 0.00
1m 3y 0.23 0.09 0.00 0.00 0.00 0.23 0.00 0.04 0.00
1m 20y 0.54 0.09 0.06 0.00 0.00 0.50 0.00 0.08 0.00
9m 3m 0.31 0.07 0.22 0.00 0.00 0.46 0.00 0.02 0.06
9m 3y 0.46 0.11 0.13 0.00 0.00 0.61 0.00 0.10 0.07
9m 20y 0.69 0.14 0.21 0.00 0.00 0.79 0.00 0.16 0.07
18m 3m 0.31 0.09 0.33 0.00 0.00 0.47 0.00 0.06 0.16
18m 3y 0.46 0.12 0.21 0.00 0.00 0.61 0.00 0.16 0.17
18m 20y 0.69 0.16 0.27 0.00 0.00 0.79 0.00 0.22 0.17

Table 2 has the purpose of comparing the importance of the different macro variables for the
sovereign yield curve. It will be used as a criterion to select those to be used in the later models. The
ordering of the impact is the following:

• Greater effect: VIX and BM&F slope.
• Some effect: exchange rate, 10 years FED yield, FED slope, Bovespa index.
• Negligible effect: BM&F 1 month and 3 years yield, FED 1 month yield.

5.2 Macro-to-yield with default

Now, default risk is introduced into the previous specification by adding the FED latent factor besides
the macro factor and the two Brazilian latent factors. Using the constant maturity zero-coupon
US term structure, the parameters corresponding to the FED latent factor together with the model
implied latent factor are estimated in a first step. In the second step, the other parameters are
estimated conditional on the first step.

Table 3.
Summary of FED 1D + Macro {0 or 1}-D unilateral + BR 2D.
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– fund VIX bmf sl bmf 3y fed sl

LL/T 42.14 42.14 46.97 48.16 47.76 49.86
#Par 22 24 33 35 35 33
M(In) 1.05 1.05 1.14 1.01 1.02 1.03
TU3m 1.72 1.74 1.30 2.46 0.72 8.58
TU1y 1.45 1.45 1.58 1.77 1.70 6.25
TU5y 1.99 2.01 1.27 1.01 1.24 3.57
TU10y 5.68 5.79 3.30 3.74 1.92 1.44
c(θ1,s) −0.28 −0.39 −0.37 −0.42 −0.19 0.17
c(θ1,l) −0.28 −0.18 −0.23 −0.15 −0.36 −0.24
c(θ2,s) −0.74 −0.68 −0.68 −0.71 −0.96 −0.71
c(θ2,l) 0.99 0.98 0.97 0.98 0.86 0.96
M(σu) 90 90 71 66 72 79

In Table 3, we show a summary of results of the model. It shows results similar to the Table
1. The first column show a model without macro factors. The second column corresponds to a
model similar to the first one, but in which the risk premium parameters are functions of a slowly
varying macroeconomic fundamental, the Debt/GDP. The others are macro-to-yield models. Bellow,
we present the variance decomposition of the {3m, 3y, 20y}-yields of those models.
The inclusion of the FED produces a gain of likelihood and of fitting. There is still low forecasting

performance and the θ2 remains highly linked to the mean level of the yields.
The forth table details the contribution of each state factor. The first column identifies the time

span between the shock and the response. The second column identifies the factor that is originating
the impulse. How much it will impact on the selected yields will depend on the specification, and is
listed from the forth column to the last.

Table 4.
Variance decomposition of yields. Fed 1D + Macro {0,1}-D unilateral + BR 2D models. Horizons

of 1m, 9m and 18m ahead.

Horiz Imp Resp — fund VIX bmf sl bmf 3y fed sl
1m FED B3m 0.00 0.00 0.00 0.00 0.01 0.00

B3y 0.00 0.00 0.00 0.00 0.01 0.00
B20y 0.00 0.00 0.00 0.00 0.01 0.00

Macr B3m 0.15 0.01 0.01 0.02
B3y 0.25 0.02 0.00 0.01
B20y 0.56 0.05 0.04 0.01

θ1 B3m 0.13 0.14 0.10 0.25 0.30 0.51
B3y 0.01 0.01 0.01 0.08 0.79 0.24
B20y 0.18 0.17 0.09 0.07 0.85 0.02

θ2 B3m 0.87 0.86 0.75 0.74 0.68 0.47
B3y 0.99 0.99 0.74 0.89 0.20 0.75
B20y 0.82 0.83 0.35 0.88 0.10 0.96
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Horiz Imp Resp — fund VIX bmf sl bmf 3y fed sl

9m FED B3m 0.01 0.01 0.04 0.01 0.04 0.06
B3y 0.00 0.00 0.02 0.00 0.02 0.05
B20y 0.00 0.00 0.01 0.00 0.02 0.05

Macr B3m 0.37 0.07 0.11 0.14
B3y 0.50 0.08 0.02 0.16
B20y 0.70 0.09 0.03 0.17

θ1 B3m 0.26 0.26 0.08 0.14 0.32 0.23
B3y 0.20 0.20 0.02 0.11 0.89 0.17
B20y 0.12 0.13 0.05 0.11 0.91 0.13

θ2 B3m 0.74 0.74 0.51 0.77 0.53 0.57
B3y 0.80 0.80 0.47 0.80 0.07 0.63
B20y 0.88 0.87 0.24 0.80 0.04 0.65

Horiz Imp Resp — fund VIX bmf sl bmf 3y fed sl
18m FED B3m 0.01 0.01 0.08 0.01 0.08 0.07

B3y 0.00 0.00 0.03 0.00 0.03 0.05
B20y 0.00 0.00 0.02 0.00 0.02 0.06

Macr B3m 0.35 0.08 0.11 0.18
B3y 0.49 0.09 0.01 0.19
B20y 0.69 0.10 0.02 0.20

θ1 B3m 0.24 0.25 0.08 0.13 0.34 0.19
B3y 0.20 0.20 0.02 0.11 0.92 0.16
B20y 0.19 0.20 0.05 0.11 0.93 0.14

θ2 B3m 0.75 0.75 0.49 0.77 0.47 0.57
B3y 0.80 0.80 0.46 0.79 0.04 0.60
B20y 0.81 0.80 0.24 0.79 0.03 0.61

We see in Table 4 that, clearly, the VIX has the biggest effect among the chosen macro variables,
reaching up to 70% of the variation of the 20 years yield in the 18 months horizon. The FED slope
and BM&F slope also explain some variation, up yo 10% and 20% respectively. On the other hand,
the FED latent variable, which is highly correlated to the FED short rate, do not seem to contribute
to the variance of the Brazilian sovereign yields.
The next table repeats the exercise, this time evaluating the default probabilities.

Table 5.
Variance Decomposition of the Default Probabilities. Fed 1D + Macro {0,1}-D unilateral + BR

2D models. Horizons of 1m, 9m and 18m ahead.
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Hor Imp Resp — fund VIX bmf s bmf 3y fed sl

1m FED B3m 0.00 0.00 0.00 0.00 0.00 0.01
B3y 0.00 0.00 0.19 0.00 0.12 0.04
B20y 0.00 0.00 0.69 0.05 0.51 0.03

Macr B3m 0.54 0.05 0.08 0.04
B3y 0.48 0.09 0.26 0.20
B20y 0.19 0.09 0.09 0.22

θ1 B3m 0.22 0.22 0.09 0.15 0.21 0.34
B3y 0.27 0.28 0.06 0.12 0.18 0.17
B20y 0.27 0.28 0.02 0.11 0.24 0.15

θ2 B3m 0.78 0.77 0.37 0.80 0.70 0.62
B3y 0.73 0.72 0.27 0.79 0.45 0.60
B20y 0.73 0.72 0.10 0.74 0.16 0.59

Hor Imp Resp — fund VIX bmf s bmf 3y fed sl
9m FED B3m 0.00 0.00 0.01 0.00 0.01 0.04

B3y 0.01 0.01 0.60 0.00 0.25 0.04
B20y 0.01 0.01 0.92 0.06 0.65 0.03

Macr B3m 0.61 0.09 0.25 0.18
B3y 0.26 0.10 0.28 0.22
B20y 0.05 0.09 0.07 0.23

θ1 B3m 0.28 0.28 0.07 0.12 0.18 0.19
B3y 0.29 0.29 0.03 0.11 0.15 0.15
B20y 0.29 0.29 0.01 0.11 0.21 0.15

θ2 B3m 0.72 0.72 0.30 0.79 0.56 0.60
B3y 0.71 0.71 0.11 0.78 0.31 0.59
B20y 0.71 0.71 0.02 0.74 0.08 0.59

Hor Imp Resp — fund VIX bmf s bmf 3y fed sl
18m FED B3m 0.00 0.00 0.03 0.00 0.04 0.04

B3y 0.01 0.01 0.73 0.01 0.37 0.04
B20y 0.01 0.01 0.96 0.07 0.71 0.03

Macr B3m 0.60 0.10 0.27 0.20
B3y 0.17 0.10 0.24 0.22
B20y 0.03 0.09 0.05 0.23

θ1 B3m 0.27 0.27 0.07 0.12 0.17 0.17
B3y 0.28 0.29 0.02 0.11 0.14 0.15
B20y 0.28 0.29 0.00 0.11 0.20 0.15

θ2 B3m 0.73 0.73 0.30 0.79 0.53 0.59
B3y 0.71 0.71 0.07 0.78 0.25 0.59
B20y 0.71 0.71 0.01 0.73 0.05 0.59

Table 5 shows the variance decomposition of the log of the survival probabilities. Again, the VIX
has the greatest effect, specially on the shorter yields. According to the model, in the 18 months
horizon, it accounts for 60% of the 3-month yield, while in the models with the BM&F 3-years yield
or the FED slope, it explains 27% and 20%, respectively. However, the macro-to-yield hypothesis is
more restrictive for BM&F yields case, since the external yield curve cannot affect the domestic yield
curve. In the next subsection, we treat domestic factors in a bilateral way.
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Table 6.
Delta parameters.

– fund vix bmf sl bmf 3y
FED 0.0037 0.0045 0.0037 0.0042 0.0065
Macro −0.1251 0.0316 −0.0244
θ1 0.0425 0.0433 0.0460 0.0724 −0.0661
θ2 0.1080 0.1079 0.1197 0.0766 0.1212

Table 6 presents values of the estimated delta parameters governing the Brazilian short rate, that
is Rt = δr0 + δs0 + (δ

r
1 + δs1) ·Xt.

5.3 Bilateral models

This subsection present the specifications with one FED latent factor, an internal and an external
macro factor, and two Brazilian latent factors. The domestic macro factor has a bilateral interaction
with the sovereign Brazilian factors, that is, the macro factors and the sovereign yield curves fully
interact.

Table 7.
Summary of FED 1D + Macro 2D bilateral + BR 2D.

vix bmf 3m vix bmf sl vix bmf 3y vix lbov vix lbov/ex
LL/T 52.90 52.52 52.91 55.81 55.57
#Par 51 51 51 51 51
M(In) 1.00 0.99 1.02 1.04 1.05
TU3m 2.77 2.80 3.20 3.82 3.42
TU1y 2.29 2.35 2.56 4.45 4.04
TU5y 1.02 1.04 1.03 3.20 2.65
TU10y 2.29 2.40 2.12 1.77 1.45
c(θ1,s) −0.08 −0.48 −0.04 −0.86 −0.86
c(θ1,l) −0.45 −0.02 −0.52 0.50 0.50
c(θ2,s) −0.54 −0.54 −0.55 −0.63 −0.64
c(θ2,l) 0.92 0.93 0.93 0.96 0.96
M(σu) 61 62 61 67 68

Table 7 is a summary of the main models. Again, the likelihood indicates that more information
was added with the inclusion of more macro factors. The out-of-sample forecasting performance
continues to be low. The in sample fitting improved a little. The unobservable factor θ2 can again be
interpreted as the level.

Table 8.
Variance Decomposition. Fed 1D + Macro 2D + BR2D models.
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Hor Imp Resp vx bmf3m vx bmfsl vx bmf3y vx lbov vx lbov/ex

1m FED B3m 0.01 0.00 0.01 0.01 0.01
B3y 0.00 0.00 0.00 0.00 0.00
B20y 0.00 0.00 0.00 0.00 0.00

VIX B3m 0.04 0.02 0.04 0.02 0.02
B3y 0.05 0.02 0.05 0.04 0.04
B20y 0.20 0.27 0.20 0.34 0.36

bmfbov B3m 0.00 0.02 0.01 0.00 0.00
B3y 0.00 0.03 0.00 0.00 0.00
B20y 0.00 0.03 0.01 0.00 0.00

θ1 B3m 0.19 0.38 0.17 0.68 0.68
B3y 0.03 0.13 0.02 0.20 0.19
B20y 0.00 0.02 0.00 0.05 0.05

θ2 B3m 0.19 0.38 0.17 0.68 0.68
B3y 0.91 0.81 0.93 0.76 0.76
B20y 0.80 0.67 0.79 0.61 0.59

Hor Imp Resp vx bmf3m vx bmfsl vx bmf3y vx lbov vx lbov/ex
9m FED B3m 0.02 0.02 0.03 0.02 0.03

B3y 0.01 0.01 0.01 0.04 0.05
B20y 0.00 0.00 0.00 0.04 0.04

VIX B3m 0.26 0.20 0.32 0.21 0.21
B3y 0.33 0.23 0.39 0.20 0.21
B20y 0.48 0.38 0.53 0.15 0.16

bmfbov B3m 0.02 0.07 0.01 0.00 0.00
B3y 0.02 0.10 0.01 0.03 0.01
B20y 0.01 0.09 0.02 0.02 0.00

θ1 B3m 0.12 0.22 0.09 0.51 0.50
B3y 0.04 0.09 0.01 0.50 0.52
B20y 0.01 0.04 0.01 0.69 0.70

θ2 B3m 0.57 0.48 0.56 0.25 0.25
B3y 0.61 0.57 0.58 0.23 0.21
B20y 0.50 0.49 0.43 0.10 0.09
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Hor Imp Resp vx bmf3m vx bmfsl vx bmf3y vx lbov vx lbov/ex

18m FED B3m 0.06 0.06 0.06 0.08 0.11
B3y 0.03 0.03 0.03 0.07 0.08
B20y 0.01 0.01 0.01 0.05 0.06

VIX B3m 0.26 0.20 0.31 0.20 0.20
B3y 0.32 0.23 0.39 0.10 0.10
B20y 0.47 0.38 0.53 0.07 0.07

bmfbov B3m 0.02 0.07 0.01 0.01 0.00
B3y 0.02 0.10 0.01 0.03 0.01
B20y 0.01 0.09 0.02 0.02 0.00

θ1 B3m 0.12 0.21 0.08 0.48 0.46
B3y 0.04 0.09 0.01 0.71 0.73
B20y 0.01 0.04 0.01 0.81 0.83

θ2 B3m 0.55 0.46 0.53 0.23 0.23
B3y 0.59 0.56 0.56 0.10 0.09
B20y 0.50 0.48 0.43 0.04 0.04

Table 8 show the variance decomposition of {1m,3y,20y}-yields for forecast horizons of {1,9,18}-
months ahead of our main models. In line with the preliminary models, the VIX is again the most
macro important factor influencing the yields. Of the domestic yields, only the 3y-1m slope has some
effect.
Next, in Table 9, we present the variance decomposition of the default probabilities of the main

models. In the 9 and 18 month horizon decomposition (free from the initial condition effects) the
results show that:

• In all specifications, the FED has small effect of short bonds, but about 90% of changes in
implied default probabilities of longer bonds are attributable to changes in the FED short rates.

• In all specifications, the VIX has small effect of long bonds, but about 50% of changes in implied
default probabilities of shorter bonds are attributable to changes in the VIX index.

• Of the domestic factors, only the slope of the term structure has some effect, account for 11%
of changes in implied probabilities of the short bond.

• The domestic short and long rate and the stock exchange index could not be traced as a source
of default probability changes.

Figure 3 shows the evolution of the 1-yearl survival probability along the sample, and Figure 4
the term structure of default probabilities in the last day of the sample. The figure indicates some
robustness of the estimations.
Impulse response functions are plotted after the default probabilities. Each figure presents the

effect of a shock of one standard deviation of a monthly variation of one state variable. Figure 5
evaluate the impact of a FED shock on itself, on the macro factors and on the {3m, 3y, 20y}-yields.
The next figure shows the response to one deviation of a monthly variation of VIX shocks. All the yield
rates are increased about 1% in absolute terms 3 months after the shock an then decreases. Figure
7 shows the impact of the domestic macro factors. Changes in either the domestic short or long rate
did not result in changes of the sovereign yields. But the domestic slope did cause an increase. It
may indicate a change of expectations due to a future rise in inflation. A rise of the domestic stock
exchange caused a small decrease of the yields.
Figure 10 shows the impact of an increase of one deviation of a monthly variation of the FED

latent factor (approximately the FED short rate) on the default probabilities. It shows that the
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survival probability fall by up to 2% in relative terms. An increase in VIX also decreases the survival
probability, but about 0.6% in relative terms. Of the domestic factors, only the BM&F slope has
some impact, decreasing the long end survival probability by about 0.35% in relative terms. Factor
Loadings of the model are shown in Figure 15.

Table 9.
Variance Decomposition of the Default Probabilities. Fed 1D + Macro 2D + BR 2D models.
Hor Imp Resp vx bmf3m vx bmfsl vx bmf3y vx lbov vx lbov/ex
1m FED B3m 0.00 0.00 0.00 0.02 0.02

B3y 0.08 0.07 0.09 0.10 0.21
B20y 0.51 0.47 0.52 0.66 0.80

VIX B3m 0.29 0.19 0.34 0.15 0.16
B3y 0.36 0.31 0.55 0.29 0.26
B20y 0.20 0.18 0.29 0.11 0.07

bmfbov B3m 0.01 0.08 0.01 0.00 0.00
B3y 0.03 0.11 0.02 0.01 0.01
B20y 0.01 0.06 0.01 0.00 0.00

θ1 B3m 0.11 0.21 0.06 0.61 0.61
B3y 0.09 0.11 0.01 0.45 0.38
B20y 0.05 0.06 0.00 0.18 0.10

θ2 B3m 0.11 0.21 0.06 0.61 0.61
B3y 0.43 0.41 0.33 0.16 0.14
B20y 0.23 0.24 0.18 0.06 0.03

Hor Imp Resp vx bmf3m vx bmfsl vx bmf3y vx lbov vx lbov/ex
9m FED B3m 0.00 0.00 0.00 0.02 0.02

B3y 0.29 0.21 0.29 0.42 0.59
B20y 0.79 0.73 0.78 0.88 0.93

VIX B3m 0.42 0.32 0.56 0.31 0.31
B3y 0.33 0.31 0.51 0.25 0.18
B20y 0.10 0.11 0.16 0.05 0.03

bmfbov B3m 0.03 0.11 0.01 0.00 0.00
B3y 0.03 0.10 0.02 0.01 0.01
B20y 0.01 0.03 0.01 0.00 0.00

θ1 B3m 0.09 0.12 0.03 0.49 0.49
B3y 0.07 0.06 0.00 0.24 0.16
B20y 0.02 0.02 0.00 0.05 0.03

θ2 B3m 0.46 0.44 0.39 0.18 0.18
B3y 0.29 0.31 0.17 0.08 0.06
B20y 0.08 0.11 0.05 0.02 0.01
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Hor Imp Resp vx bmf3m vx bmfsl vx bmf3y vx lbov vx lbov/ex

18m FED B3m 0.01 0.01 0.02 0.04 0.06
B3y 0.45 0.35 0.44 0.61 0.75
B20y 0.88 0.83 0.87 0.93 0.96

VIX B3m 0.42 0.32 0.56 0.30 0.30
B3y 0.25 0.26 0.40 0.17 0.11
B20y 0.06 0.07 0.09 0.03 0.02

bmfbov B3m 0.03 0.11 0.01 0.00 0.01
B3y 0.03 0.08 0.02 0.00 0.01
B20y 0.01 0.02 0.00 0.00 0.00

θ1 B3m 0.09 0.12 0.03 0.48 0.47
B3y 0.05 0.05 0.00 0.16 0.10
B20y 0.01 0.01 0.00 0.03 0.01

θ2 B3m 0.45 0.43 0.38 0.17 0.17
B3y 0.22 0.26 0.14 0.06 0.03
B20y 0.05 0.07 0.03 0.01 0.00

Table 10. The estimated δ1 parameters of the bilateral models.
vx bmf sl vx bmf 3y vx lbov vx lbov/ex

FED 0.0076 0.0087 −0.0130 −0.0126
VIX −0.0242 −0.0327 −0.0772 −0.0739

BMF/Bov 0.0035 0.1164 0.0981 0.1005
θ1 0.0769 0.0617 0.1110 0.1110
θ2 0.0877 0.1073 0.0665 0.0665

5.4 One step estimation

In this subsection, we show how to make a simultaneous estimation of the US and the Brazilian yield
curve and the macro factors. The difference is that we estimate the parameters in one step instead of
the usual two-step (or even 3-step) procedure. Since we suppose that the US yield curve parameters
are not affected by the Brazilian parameters, the joint probability density of the yield curves and
macro factors can be decomposed:

f(Y US , Y BR,MUS ,MBR;ΨUS ,ΨBR) = f(Y US ,MUS ;ΨUS)f(Y BR,MBR;ΨBR|Y US ,MUS ;ΨUS).
(77)

Thus, the loglikelihood will be the sum of two functions, one depending on ΨUS and the other on
(ΨUS ,ΨBR).
If we stick to models with one FED latent factor, the VIX as the sole macro factor, and one Brazilian

latent factor, there are still many possible specifications depending on choices of the parameters δ,K,
and Σ of the FED and Brazilian curves.
In our previous models, the US short rate did not depended on macro factors, that is rt = δr0 +

(δr1, 0, 0) · Xt. It clearly does not depend on the Brazilian macro factor, but what can be said with
respect to the VIX? Using rt = δr0 + (δ

r
1, δ

r
2, 0) ·Xt can answer the question.

Likewise, the mean reversion matrix K of the FED curve did not depend on the macro factors.
The dynamics of the specification will change completely depending on the choice of

K =

µ
Kθθ KθM

KMθ KMM

¶
or K =

µ
Kθθ 0
KMθ KMM

¶
. (78)

24



Figure 3:

What will happen if we insert a KθM factor in the FED curve? The model will become a bilateral
model with respect to VIX. Also, the FED volatility matrix Σ can be the unity matrix or

Σ =

µ
I 0
ΣMθ ΣMM

¶
. (79)

The choice is between having latent shocks contemporaneous to macro shocks or not. Similarly,
modeling of the Brazilian curve involves choices of parameters which will affect the dynamics of the
state vectors. However, the options are limited by the identification restrictions, and we leave those
questions for future work.

5.5 Default Probabilities

Figure 3 depicts the path of 1 minus the probability of a default occurring before 1 year, that is, the
market implied probability that the bond will survive for another year. It can be seen that different
specifications tend to present similar probabilities. Figure 4 depicts the term structure of default
survival probabilities for the last day of the sample.
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Figure 4: Term Structure of Survival Probabilities in the last day of the sample.
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6 Conclusion
This article proposed an approach combining term structure models with macro factors and reduced
credit risk models, aiming to measure how unexpected macroeconomic changes affect sovereign default
probabilities. Amato and Luisi (2005) also explore the same ideas with respect to corporate credit
risk, but our article uses a fully interacting dynamics, in which macro factors afect and are affected
by the credit spreads. Also, we presented and estimated an identified model, while other articles use
super or sub-identified models.
We tested the influence of two domestic macro factors and term structure on the sovereign term

structure of interest rates and of credit spreads, and the result was that VIX and FED had greater
impact. We calculated variance decompositions and impulse response functions in order to make
quantitative predictions. The model presented good fitting to data, but did not show good forecasting
performance. Our results have shown that VIX is an important factor for the default probabilities of
emerging market short-term bonds. On the other hand, the FED is an important indicator for the
longer yields.
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A Appendix: Identification

In order to identify the unobservable factors θ, we modify the method introduced by Dai and Singleton
(2000) to the case with macro factors. There are several possibilities and only one choice is imple-
mented. The identification is necessary because not all parameters can be estimated. There are linear
transformations on the parameter space leaving the short rate, and thus the yields, constant. These
transformations can be considered degrees of freedom that must be spent so that the model becomes
identified. If a model is not identified, as Collin-Dufresne et al (2006) put it, two researchers using the
same data can arrive at different sets of parameter estimates even if they succeed to maximize. Also,
the impulse response functions could be arbitrarily changed and model forecasts would be meaning-
less. Using the notation of the continuous time specification, in which Ψ = (δ0, δ1,K, ξ, λ0, λ1,Σ), the
affine invariant transformation T is defined by a nonsingular matrix L such that the

TL(Ψ) = (δ0, (L
|)−1δ1, LKL−1, Lξ, λ0, λ1, LΣ). (80)

Another invariant transformation is the Brownian motion rotation O, which takes a vector of unob-
served, independent Brownian motions into another vector of independent Brownian motions:

TO(Ψ) = (δ0, δ1,K, ξ,Oλ0, Oλ1,ΣO
|). (81)
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The rotations do not affect the state factors and can always be used to make Σ a triangular matrix.
We impose a lower triangular Σ, which implies that macro factors do not react contemporaneously to
monetary policy.
We impose E(θ) = 0 as Dai and Singleton (2000), and subtract the mean value of the macro

factors, so that E(M) = 0.Then, ξ = 0. Also, in contrast to the case with purely latent factors, the
transformations L must preserve the macro factors:

L =

µ
I 0
A B

¶
, (82)

The matrices A and B matrix are chosen such that V ar(θ) = I,
P

Mθ = 0, that is

LΣ =

µ
ΣMM 0
0 I

¶
(83)

where, as said before, ΣMM is lower triangular. This implies that macro and monetary factors do not
have correlated contemporaneous innovations.
There is another invariant transformation that must be used in case LΣ has the special format

shown above. There is another operator

R =

µ
I 0
0 O

¶
, (84)

where O is another rotation which makes Φθθ lower triangular. Summing up, we have

Σ =

µ
ΣMM 0
0 I

¶
, ξ = 0, Φ =

µ
ΦMM ΦMθ

ΦθM Φθθ

¶
with Φθθ lower triangular. (85)

This completes an exactly identified specification.
We remark that another possibility is imposing a triangular Φθθ instead of Φθθ. Actually, many

other identifications are possible. Duffie and Kan (1996) and Collin-Dufresne et al (2006) propose an
identification strategy that is different from Dai and Singleton (2000) and ours.

B Figures

C Estimated Parameters and Confidence Intervals.
Table 10.
Estimated parameters and 1-sd confidence intervals of the main models. Part I.
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Figure 5: Impulse Response: FED shock.
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Figure 6: Impuse Response: VIX shock.
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Figure 7: Impulse Response: BM&F or Bovespa shock.
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Figure 8: Impulse Response: unobservable factor θ1 shock.
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Figure 9: Impulse Response: unobservable factor θ2 (or level) shock.
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Figure 10: Impulse Response Survival Probabilties: FED shock.
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Figure 11: Impulse Response Survival Probabilities: VIX shock.
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Figure 12: Impulse Response Survival Probabilities: BM&F or Bovespa shocks.
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Figure 13: Impulse Response Survival Probabilities: θ1 shock.
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Figure 14: Impulse Response Survival Probabilities: θ2 (or level) shock.
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Figure 15: Factor Loadings of the main models.
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Figure 16: Impulse response 1. Sub identified model with FED and VIX. Parameter estimation 1.

Figure 17: Impulse response 2. Sub identified model with FED and VIX. Parameter estimation 2.
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Figure 18: Impulse response 3. Sub identified model with FED and VIX. Parameter estimation 3.

vix+bmf3m vix+bmfsl vix+bmf3y vix+bovespa vix+bovespa/ex
Par sd Par sd Par sd Par sd Par sd

δ1 0.0015 0.0024 0.0076 0.0017 0.0087 0.0024 −0.0130 0.0016 −0.0123 0.0014
δ2 −0.0617 x −0.0242 x −0.0327 0.0085 −0.0772 0.0063 −0.0742 0.0052
δ3 0.0005 0.0022 0.0035 0.0001 0.1164 0.0032 0.0981 x 0.1007 0.0000
δ4 −0.0255 x 0.0769 0.0017 0.0617 0.0017 0.1110 0.0000 0.1109 0.0000
δ5 0.1233 0.0038 0.0877 0.0013 0.1073 0.0021 0.0665 0.0000 0.0665 0.0000
a∗2 −3.3912 0.0188 0.1176 0.0060 0.4656 0.0424 0.2375 0.0059 0.2402 0.0054
a∗3 2.7542 0.0155 −15.13 0.6152 −0.5998 0.0457 −0.751 0.2494 −0.1889 0.7477
a∗4 −0.3910 0.0392 0.4050 0.0327 0.6535 0.0718 −171.4 1.4626 −184.8 0.0344
a∗5 −1.5964 0.0300 0.4790 0.0237 0.5361 0.0298 0.4344 0.0257 0.4341 0.0249
K21 0.0734 0.0016 −0.0039 0.0006 −0.0069 0.0024 0.0045 0.0010 0.0044 0.0010
K22 0.2789 0.0249 0.1170 0.0174 0.6570 0.0434 0.2469 x 0.2517 0.0078
K32 0.2364 0.0418 −26.94 2.7211 −1.0128 0.0849 0.0054 x 0.0414 0.0291
K33 0.0358 0.0010 −0.6638 x −0.5834 0.0022 0.3593 0.0065 0.3537 0.0168
K34 −0.3428 0.0076 −29.40 0.6891 −0.4074 0.0025 −0.5228 0.0002 −0.5232 0.0018
K35 −0.6996 0.0054 −3.686 0.1492 −0.1539 0.0059 −0.3102 0.0006 −0.3099 0.0007
K41 0.0125 0.0023 0.0021 0.0025 −0.0020 0.0041 0.0048 0.0071 0.0045 0.0072
K42 0.4319 0.0248 1.4733 0.0914 1.8553 0.0429 1.4873 0.0000 1.4974 0.0422
K43 0.4906 x 0.0450 0.0008 1.7020 0.0383 0.5742 0.0000 0.5996 0.0009
K44 0.1264 0.0102 0.9163 0.0154 0.5615 0.0085 0.7363 0.0005 0.7441 x
K51 0.0527 0.0049 0.0045 0.0035 0.0016 0.0047 −0.0182 0.0055 −0.0167 0.0055
K52 0.6747 0.0419 −0.1420 0.0301 0.1045 0.0332 −0.7765 x −0.7520 0.0301
K53 0.5595 0.0076 0.0086 x 0.4462 0.0001 0.0943 0.0000 0.0937 0.0010
K54 0.0734 0.0046 0.3348 0.0021 0.2810 0.0032 0.0735 0.0000 0.0736 0.0000
K55 0.0045 0.0052 0.1181 0.0008 0.1613 0.0026 0.0451 0.0000 0.0451 0.0000
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Table 11.
Estimated parameters and 1 standard deviation (sd) confidence intervals of the main models. Part

II.
vix+bmf3m vix+bmfsl vix+bmf3y vix+bovespa vix+bovespa/ex
Par sd Par sd Par sd Par sd Par sd

K∗21 −0.053 0.0438 −0.0457 0.0443 −0.0437 0.0432 −0.0697 0.0415 −0.0843 0.0434
K∗22 7.4784 2.1548 8.3093 1.7531 7.6871 1.9719 8.3080 1.7198 8.2697 1.8194
K∗32 −1.383 1.2890 0.0000 1.2961 −2.2925 1.1346 0.0507 0.0191 0.0407 0.0278
K∗33 6.4031 1.3427 11.904 2.1064 5.5400 1.7209 2.9970 0.7565 1.5462 0.5366
K∗34 0.1163 0.2454 0.2154 0.2919 0.6059 0.2460 0.0048 0.0000 0.0044 x
K∗35 0.1520 0.1702 −0.7484 0.1570 −0.0134 0.1781 0.0029 0.0000 0.0026 x
K∗41 −0.712 0.1961 −0.4406 0.1795 −0.3843 0.2089 0.0000 0.1678 0.0006 0.1681
K∗42 40.712 1.2936 1.6728 8.2186 15.236 7.6095 −2.2123 6.5458 0.0064 10.506
K∗43 −6.785 5.2695 11.927 8.5745 24.583 3.1266 −149.8 8.0909 −45.04 53.709
K∗44 5.7131 1.8204 12.246 1.7345 9.2538 1.7525 −0.0008 0.0019 −0.0008 0.0017
K∗51 −1.363 0.2158 0.1698 0.2116 0.0920 0.2370 −1.362 0.2660 −1.4139 0.1167
K∗52 −36.68 0.0000 −24.97 2.4255 −31.04 0.4505 −32.406 31.6276 −38.07 16.503
K∗53 7.312 1.4328 −43.84 34.704 −10.85 11.167 420.31 26.9421 143.58 13.806
K∗54 2.873 2.2072 −4.439 2.1716 −0.268 2.3170 6.8271 0.8592 6.7689 1.5567
K∗55 12.963 1.3311 5.6504 0.7062 5.1173 2.2031 4.0883 0.5145 4.0605 0.9341
Σ21 −0.018 0.0071 −0.0173 0.0073 −0.0167 0.0070 −0.0177 0.0072 −0.0179 0.0072
Σ22 0.2605 0.0056 0.2659 0.0056 0.2610 0.0055 0.2659 0.0052 0.2657 0.0050
Σ31 0.0075 0.0033 −0.0068 0.0040 0.0020 0.0030 0.0000 0.0001 0.0000 0.0001
Σ32 0.0073 0.0035 0.0105 0.0042 0.0163 0.0031 −0.0011 0.0001 −0.0013 0.0001
Σ33 0.1189 0.0024 0.1457 0.0028 0.1080 0.0022 0.0030 0.0000 0.0038 0.0000
σ1 0.0021 0.0000 0.0021 0.0000 0.0022 0.0001 0.0021 0.0000 0.0021 0.0000
σ2 0.0053 0.0001 0.0053 0.0001 0.0055 0.0001 0.0058 0.0001 0.0058 0.0001
σ3 0.0087 0.0002 0.0090 0.0002 0.0091 0.0002 0.0099 0.0002 0.0099 0.0002
σ4 0.0082 0.0002 0.0079 0.0002 0.0079 0.0002 0.0083 0.0001 0.0083 0.0002
σ5 0.0046 0.0001 0.0050 0.0001 0.0045 0.0001 0.0054 0.0001 0.0054 0.0001
σ6 0.0077 0.0001 0.0074 0.0002 0.0070 0.0001 0.0081 0.0002 0.0081 0.0002
σ7 0.0074 0.0001 0.0068 0.0001 0.0066 0.0001 0.0076 0.0001 0.0076 0.0002

Table 12. Parameters of the FED 1D:
δ1 a∗ K∗ K
0.0078 0.9898 0.2341 0.1325
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