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RESUMO

As autoridades monetárias necessitam de uma previsão da tendência futura da
inflação para agir preventivamente sobre a economia. Na literatura encontram-se
muitas propostas para o núcleo da inflação que evitam algumas das deficiências
do índice de preços usual como um previsor da inflação futura.

O índice de preços é definido como uma soma ponderada das taxas de variação de
preços de uma lista de bens e serviços. A utilização desse índice como um
indicador da inflação futura é criticada na literatura porque a variabilidade de
preços dos produtos é heterogênea, e alguns dos preços apresentam componente
sazonal relevante.

Este artigo propõe um modelo multivariado que descreve os movimentos dos
preços dos produtos com uma componente comum, e componentes sazonais e
irregulares definidas para cada elemento da lista de bens e serviços do índice de
preços. É um modelo dinâmico que utiliza um filtro seqüencial robusto. As
distribuições preditivas a posteriori das quantidades de interesse serão avaliadas
utilizando a técnica estocástica do Monte Carlo Markov Chain  (MCMC). Os
diferentes modelos serão comparados utilizando como critério minimizar a
variância preditiva.
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ABSTRACT

The monetary authorities need a future measure of in°ation trend to keep on tracking

the in°ation on target. Many alternatives of the core in°ation measure have appeared

in the recent literature pretending to avoid the de¯ciencies of the usual headline in°ation

index as a predictor. This price index is de¯ned as some weighted average of the individual

price change of a list of goods and services. To use it as the future in°ation indicator is

criticized in the literature, as far as the products are heterogeneous in respect to the vari-

ability and some of the involved prices have relevant seasonal movements. A multivariate

model including simultaneously the seasonal e®ects of each component of the price index

and a common trend - the core in°ation - will be developed in this paper. The model

will be phrased as a dynamic model and a robust sequential ¯lter will be introduced. The

posterior and predictive distributions of the quantities of interest will be evaluated via sto-

chastic simulation techniques, MCMC - Monte Carlo Markov Chain. Di®erent models will

be compared using the minimum posterior predictive loss approach and many graphical

illustrations will be presented.
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1 Introduction

Almost all the analysis of core in°ation assume that there is a well de¯ned

concept of monetary in°ation that ought to be of concern to monetary pol-

icy makers. This kind of in°ation is not well captured by the standard price

indexes as far as this concept is a bad predictor of future in°ation. The mon-

etary authorities need a future measure of in°ation trend to keep on tracking

the in°ation on target. Many alternatives of the core in°ation measure have

appeared in the recent literature pretending to avoid the de¯ciencies of the

usual headline in°ation index as a predictor. This price index is de¯ned as

some weighted average of the individual price changes of goods and services

with weights chosen on the basis of the expenditure shares. It is criticized

by many authors to use it as the future in°ation prediction, given rise to two

complementary alternatives to build up a core in°ation indicator.

The ¯rst group of arguments could be summarized as follows. If the

weight average of the price changes is an in°ation predictor, the present

index, although speci¯ed as a weighted mean of the price changes of individ-

ual components, is a ine±cient estimator of the mean variation, since each

component has its own volatility. In this case, the price changes for each

component of the index must be standardized by its volatility measure. It is

clear that price variations of the same magnitude but associated to compo-

nents with di®erent variability must have di®erent impact on the expectation

of the future in°ation.

Certainly the products are not homogeneous with respect to their vari-

ability. There are products subject to periodic shortage { as vegetables or

products with special harvest season { which present great variability and

products with stable price for long time periods. In order to ¯x those draw-

backs some authors, as for example Cecchetti (1997) introduced the use of

trimmed mean of the cross section distribution of price changes to track trend

in°ation.

A second approach emphasizes the predictive aspect of the problem and

de¯nes the core in°ation as the common component involved in the descrip-

tion of the observed price changes. This approach, also introduced by Cec-

cheti, de¯nes the core in°ation as the common trend describing the joint dis-
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tribution of the price changes of individual goods and services between two

periods. Another class of criticism consider the fact that some prices have

seasonal movement, as for example the school fare or the products subjected

to harvest season, and therefore this regular movement must be considered

in the building up of the core in°ation.

The recent literature in core in°ation includes Bakhshi and Yates (1999),

Cecchetti and Groshen (2000), Bryan & Cecchetti (1999), Roger (1998),

Wynne (1999) and it mainly goes around to argument about criterion to trim

the price changes variation distribution. A stylized fact very well known in

the literature is that the price change distribution has a heavy tail. This

can be caused by the presence of outliers when the trimmed methods are

justi¯ed or by distributions derived as mixtures. For instance, let yyyi be a

vector of random variables (the products price changes) normally distrib-

uted with mean ¹ and di®erent and unknown variances ¾2i , which will be

assumed gamma distributed. The marginal distribution of yi given ¹ will be

a t-Student distribution. Although it is a heavy tail distribution it does not

seem reasonable to use trimmed estimators.

Since the true data generation process is unknown it is an empirical ques-

tion to decide the method to be used. The model proposed in this paper in-

cludes di®erent processes allowing to choose empirically the best alternative.

It is worth pointing out that the trimmed mean models are included in the

above class.

The target in°ation policy requires that the authorities can be able to

advance the movements of the future in°ation, so in this paper core in°ation

will be understood as the forecast of the in°ation trend based on a broad class

of models including the components: common factors, trend, seasonality and

an idiosyncratic error term. The error term is assumed to have a symmetric

location-scale multivariate distribution, unimodal and twice piecewise di®er-

entiable. This extension includes as particular case many recent attempts to

improve upon existing core in°ation measures like the trimmed mean, the

moving average of the price index and the estimation of a common trend

for the set of all price changes. One of the simplest member of the class of

models introduced in this paper is obtained assuming that:

² the common component follows a ¯rst order autoregressive process;
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² the seasonal component is deterministic; and

² the idiosyncratic error term do not have a dynamic structure.

From a methodological point of view a Bayesian approach was adopted. A

robust common component model is presented and the posterior and predic-

tive distributions are obtained via stochastic simulation methods { MCMC

- Monte Carlo Markov chain. The robust sequential Bayesian estimation or,

for simplicity, the robust Kalman ¯lter involves some approximation in the

sequential updating of the distribution of location parameters which could

be easily avoided if the dimension of the vector of prices changes were not

so huge. The approach adopted in this paper is mainly guided by the desire

to keep the computational algorithm e±cient. This model derives from the

compromise of keeping in the model the price change of each product, avoid-

ing the criticism of ine±cient estimation, and considering the dynamic of the

common price factor movement. The class of models we are introducing in

this paper do not su®er from the criticism of independency and normality of

the prices changes. Distributions with heavy tails can be used to describe

the observed price changes and the observations are only assumed to be in-

dependent conditionally to the common factors. The use of the common

factors impose a particular decomposition of the full variance and covariance

structure of the prices chances.

The paper is organized as follows. In the next Section the proposed model,

which includes the trimmed model of Cecchetti, is presented. In Section 3, a

brief discussion of estimation in complex models is considered. The equations

involved in the robust Kalman ¯lter are derived and the MCMC procedure

is discussed step by step. The main results obtained are presented in Section

4 and the conclusions and further remarks are discussed in the ¯nal Section.

2 The Proposed Model

The main concern of the core in°ation methodology is to predict the in°ation

trend de¯ned as the moving average of the future in°ation (1), where the

in°ation ¼t is de¯ned as the weighted mean of the price changes (yyyt an m£1
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vector) for all the components of the price index.

!ht =
¼t+1 + ¢ ¢ ¢+ ¼t+h

h
; where ¼t = g0g0g0tyyyt (1)

and gggt = (g1;t; ¢ ¢ ¢ ; gm;t)0 is the weight vector assumed known for each time.
The expected value of each one of the m components of the price changes

vector, yi;t, is modeled by a common factor ¹t, a seasonal components and

an idiosyncratic shocks ei;t. The common component dynamic evolution is

described by a ¯rst order autoregressive stationary process.

yyyt = ÁÁÁDDDt + FFF¹t + eeet
¹t = a+ b(¹t¡1 ¡ a) + wt (2)

where: eeet » p(¯̄̄) and FFF = (1; ¢ ¢ ¢ ; 1)0, wt » N [0; Wt], Wt = b2( 1
f

¡
1)V [¹t¡1jt¡1], DDDt is the matrix of monthly dummy seasonal indicators of di-

mension s¡ 1, where s is the seasonal period; ÁÁÁ = (Á1; ¢ ¢ ¢ ; Ám)0 the matrix,
(s¡1)£m, of deterministic seasonal factors; (a; b) de¯nes the time evolution
of the common component, with innovation variance, Wt, de¯ned as propor-

tional to the variance of the former time period1; and, ¯nally, the distribution

of the idiosyncratic shocks, generically denoted by p, is parameterized by the

vector ¯̄̄ , which dimension varies from model to model.

As will be seen in Section 3.1 the distribution p determines the e®ect of

each observation on the estimation of the common trend. Four alternative

distributions will be discussed in this application. In one extreme case all

the information are used in equal foot and, in the other, the observations

on the tail of the distribution are not taken in consideration, because they

are supposed to be outliers. The intermediate cases permit information to

have in°uence declining to zero as they go far away from the center of the

distribution. The following table presents the alternative models, where º

denotes the degree of freedom of the t-Student distribution, V = diag(vi)

is the variance matrix of the idiosyncratic shocks. The assumptions made

about p and the content of the parametric vector ¯̄̄ , for each model, are

also presented. It is worth noting that in TRIM-® model, e100%(1¡®) denotes

the 100%(1¡ ®) percentile de¯ning the cutting point in the trimmed mean
procedure.
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Table 1: Alternative forms for the p distribution

Case Name Model ¯̄̄

1 Multivariate normal eeet » MN [0; VVV ] VVV

2 Jointly t-Student for products eeet »MtSt[0; VVV ; º] VVV , º

3 t-Student for each product ei;t » tSt[0; vi; º] VVV ; º

4 Trimmed ei;t » D(¯) e100%(1¡®)

In the case in where p is a multivariate normal, the equation 2 describes

a multivariate model, otherwise the generalized model will be called robust

multivariate model. Given the hyperparameters ª = (a; b; f; Á; ¯̄̄)0, the ex-

pected value of the predictive distribution of ¼t and !ht can easily be obtained

since they are function of the common component plus the seasonal factor.

These quantities will be the best prediction assuming the square error loss

function.

E[¼tjt¡1;ª] = ggg0tE[yyytjt¡1;ªªª] = ggg0tE[(ÁDt + F¹t + eeet)jt¡1;ªªª]
= ggg0tÁDt + E[¹tjt¡1;ª]; since ggg0tFFF = 1

E[!ht jt;ª] =
E[¼t+1jt;ª] + ¢ ¢ ¢+ E[¼t+hjt;ª]

h

=

Pk
i=1(ggg

0
t+iÁDt+i + E[¹t+ijt;ª])

h
(3)

In the multivariate normal case, !ht is normally distributed since it is a

linear combination of normal distributed random variables and otherwise it

will be approximately normal, since it is the sum of a large number 2of identi-

cally distributed random variables. For the parametric models the in°uence

function is the ¯rst derivative of the log-density and V [!ht jt;ª] can be eval-
uated in a close form. The robust log-likelihood function that approximates

the likelihood of ª can also be obtained as (see Appendix):

1see West e Harrison (1997)
2Since (m = 512 e h = 4) we have more than 2000 parcels involved in the sum,

corresponding to mh
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l(ªj!!!) = log(p(!!!jª))
' ¡

X

t

log(V [!ht jt;ª]=2¡ ½(!ht ¡E[!ht jt;ª])=(2V [!ht jt;ª]) (4)

where: !!! = (!h1 ; ¢ ¢ ¢ ; !hn)0 and ½(!) = !2 in the normal case.
In the non-parametric cases - the trimmed mean - the variance of !ht is

not analytically available. Nevertheless, if we assume that the variance is

time invariant the above expression for the log-likelihood function can be

used as an approximated criterion.

Many alternative models for the core in°ation are nested to the one we

are proposing in this paper. If a unit root is assumed, b = 1 in equation

(2), the common component describes permanent movements of the in°ation

and a similar model to that one proposed by Fiorêncio and Moreira (2000) is

obtained. If, by the other hand, the second part of equation (3) is eliminated

from the model speci¯cation, the common component looses its intertemporal

restriction, giving a simple measurement of the current in°ation taking in

consideration that index components have di®erent precision, making the

model similar to that one proposed by Cecchetti (1997).

It is worth remembering that the quantity !ht is a forecasting of the mean

in°ation in the next h time periods, given the available information until time

t. Therefore this quantity is only available till h periods of time before the

end of the sample and the densities speci¯ed before could only be evaluated

till this period time. In the results presented in this paper the last four values

of this quantity are forecasting.

3 Inference for Robust Common Trend Mod-

els

In this sort of complex models closed form expressions for the point estimates

of the quantities of interest are not often available. Adopting a Bayesian

approach the posterior and predictive distribution for all the quantities of

interest can be calculated from the prior distribution via Bayes theorem.

The Bayesian computation of those distributions can be done using MCMC
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- Monte Carlo Markov Chain techniques. This is a stochastic iterative al-

gorithm which decompose the computation of the joint posteriori distrib-

ution of the quantities of interest in more simple sub-problems. One of

those sub-problems is just the evaluation of the trajectory of the common

component given all the other parameters and the available information,

p(¹1; ¢ ¢ ¢ ; ¹T jª;T ), where T represents the global information available.
In the normal case, the multivariate dynamic model formulation of West

and Harisson (1997) can be used to calculate the mean and variance of all the

distribution involved via the recurrence equations sometimes called Kalman

¯lter. In the case where p do not represent a normal distribution there are

not analytical expressions to describe the trajectory of those parameters.

Nevertheless, assuming that p is unimodal, symmetrical and twice di®eren-

tiable, an approximate procedure, due to West (1981) and closely related to

Marseliez (1975) and Raftery and Martin (1996), is available.

3.1 Robust Sequential Filter

When p is the multivariate normal, conditional on the hyperparameters ª,

the model described by (1-2) corresponds to the usual multivariate dynamic

model, that is:

yyyt = ÁÁÁDDDt + FFF¹t + eeet; eeet » N [0; VVV ]

¹t = a+ b(¹t¡1 ¡ a) + wt; wt » N [0; b2Wt]]

where: Wt = (
1
f

¡ 1)V [¹t¡1jt¡1].
Assuming that E[¹t¡1jt¡1] and V [¹t¡1jt¡1] are known for each time t¡ 1

we can easily obtain the mean and the variance of all the distributions in-

volved, as showed in the Appendix (West and Harisson (1997)). A simplifying

assumption that does allow calculation of the posterior mean and variance

even when the observations are not normally distributed was introduced by

Masreliez (1975) and involves the score function for the predictive density -

p(ytjyt¡1) - and its ¯rst derivative. Those densities are in general intractable
in the presence of outliers and so the score function and its ¯rst derivative

must be approximated by appropriately chosen bounded continuous func-

tions, as for example the Hampel's two part redescending function. Never-

theless, when p is a heavy-tailed distribution the approach of West (1981)
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provides approximate Bayesian methods for time series analysis which ex-

tend considerably the works of Masreliez (1975) and Masreliez and Martin

(1977). An alternative approximation for the recurrence equation of Mas-

reliez is obtained after some Taylor series expansion for the log-likelihood

function.

The equations for the posterior mean and variance are replaced by:

E[¹tjt] ' E[¹tjt¡1] + V [¹tjt¡1]FFF 0g(êt)
V [¹tjt] ' V [¹tjt¡1](1¡ V [¹tjt¡1])FFFG(êt)FFF 0 (5)

where: êeet = yyyt¡E[yyytjt¡1], g(êeet) = ¡@ log(p(êeetjt¡1)=@êeet andG(êeet) = @g(êeet)=@êeet
For the normal case it is easy to show that g(êeet) = QQQ

¡1
t êeet and G(êeet) =

QQQ¡1t . Then under the normality hypothesis the robust Kalman ¯lter coin-

cides with the classical solution. If, when updating beliefs about location

surprisingly large observations must be ignored, then g(êt) and G(êt) must

tend to zero when êt ! 1. This ensures that prior and posterior mean and
variance are not impacted from the current observation, leading to the con-

cept of robust likelihood. The equation (5) shows that the in°uence function

g determines the impact of the deviation êt in the estimation of the common

component. The hypothesis behind each alternative speci¯cation of p could

help in clarifying the understanding of the in°uence function.

² Multivariate Normal (Mn): All the observations are supposed to come
from the same normal distributions and therefore the magnitude of the

deviations are not relevant to discriminate the observed values of the

components;

² Multivariate t-Student (MtSt): It assumes that the observations asso-
ciated to large deviations, evaluated in the m-dimensional space of all

the products, have less chance to belong to the sample and so the size

of those deviations are useful to discriminate the observations. Large

deviations imply less e®ect in the index formation.

² Univariate t-Student (by product) (tSt): It admits that the observation
of each product associated to the larger deviations has less chance to

belong to the sample and therefore the magnitude of the deviations
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are useful to discriminate the relevance of the observations. The larger

deviations must have less impact in the in°ation index evaluation. An

example will be useful to make some distinction between this alternative

and the former. Let us consider a situation where only few products

have large deviations. In this case it is possible that alternative (2) do

not penalize an observation relatively to all products.

² Trimmed mean (Trim): It assumes that the deviation after some
threshold are spurious and then must be eliminated from the analy-

sis. The cutting value is well chosen percentile of the distribution of

the deviations in a certain time period.

Table 2: In°uence Function

p g(êt) G(êt)

Mn QQQ¡1t êt QQQ¡1t

MtSt (º +m) QQQ¡1
êt

º+ê0tQQQ
¡1
êt

(º +m)
QQQ¡1

(º+ê0tQQQ
¡1
êt)¡2(QQQ

¡1
êt)(QQQ

¡1
êt)0

º+ê0tQQQ
¡1
êt

tSt (º + 1)
QQQ¡1

(i;i);têi;t

º+ê2i;tQQQ
¡1
(i;i);t

(º + 1)
(º¡ê2i;tQQQ

¡1
(i;i);t)QQQ

¡1
(i;i);t

(º¡ê2i;tQQQ
¡1
(i;i);t)

2

Trim êi;tI[0;e100%(1¡®)](jêi;tj) n¯

where IA(x) = 1 if x 2 A; 0 c.c. Other alternatives for the in°uence func-
tion include the Huber family, the logistic distribution as described in West

(1981).

The in°uence function for the four alternative models previously de-

scribed can be appreciated in Figure 1, where the t-Student with 2 and

20 degrees of freedom are shown. For the normal multivariate case (Mn) the

e®ect is the same independently on the deviation size. The in°uence func-

tion corresponding to the trimmed case abruptly decreases to zero and the

in°uence function corresponding to a t-Student with 2 (T (2)) and 20 (T (20))

degrees of freedom present a intermediate behavior.
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Figure 1: The In°uence Function for the standard deviation and for the four

alternatives
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3.2 Estimation

Let ªªª denote the vector of hyperparameters and ªªª(k) the former excluding

the kth element, let T denote the available information at time t and con-

sider the model de¯ned by 1-4. The posterior distribution of the vector of

hyperparameters ªªª = (ª1; ::;ªk)
0 is obtained sampling from the conditional

distribution when they are available for sampling. Then the joint distribution

of p(ªªªjT ) is obtained sampling sequentially from ªrk » p(ªkjªªªr¡1(k) ;T ); k =

1; ¢ ¢ ¢ ; n; r = 1 ¢ ¢ ¢. If same of those conditional posterior distribution were
not available for sampling some acceptance/rejection method can be used to

approximate them 3. The following algorithm permits to obtain the poste-

rior and predictive distribution for the multivariate normal case. Denote the

initial conditions by ¹t = !ht ; ª = ª0; r = 1.

Algorithm:

1. Sample ¹rt » p(¹tjª;T )
3Metropolis-Hastings, for details see Gamerman (1997).
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2. Sample Á » p(Ája; b; f; ¹t;T )

3. Sample ¯ » p(¯ja; b; f; Á; ¹t;T )

4. For k = 1; 2; 3

² Sample ªrk » N(ªr¡1k ; vk)

² Obtain l(ªªªr) using the robust Kalman ¯lter using the desired
in°uence function

² Sample u » U(0; 1), if l(ªªªr)¡ l(ªªªr¡1) > ln(u), accept ªrk, other-
wise let ªrk = ª

r¡1
k

5. check for the convergence of the chain, go back to (1) up to the con-

vergence can be accepted.

Problem 1:

Given ªªª, p(¹1; ¢ ¢ ¢ ; ¹T jª;T ) can be obtained via the Kalman ¯lter or
even its robust version. Alternatively the FFBS (forward ¯ltering, back-

ward sampling) developed by Fruhwirth-Schnatter (1994) can be used to get

e±ciently the joint distribution given ª, p(¹1; ¢ ¢ ¢ ; ¹T jªªª;T ) as follows:

² sample ¹T from (¹T jªªª;T )

² for each t = T ¡ 1; T ¡ 2; ¢ ¢ ¢ ; 1; 0 sample ¹t from (¹tj¹t+1;ªªª;T )

The marginal distribution of p¤(¹tjªªª;T ) is then easily obtained.
Problem 2:

The parameter Á is conditionally independent of (a; b; f; ¯) given ¹t, ie.:

p(Ája; b; f; ¯; ¹t;T ) = p(Áj¹t;T ). Since the seasonal components are idio-
syncratic given ¹t, their distributions are independent for each product i.

Therefore p(ÁÁÁj¹t;T ) =
Q
i p(Áij¹t;T ) and the posterior distribution of the

seasonal components for each product

(Áij¹t;T ) » N [(D0D)¡1D0(yi¡ ¹); Vi]
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where4 D = (D1; ::; DT )0.

Problem 3:

When p is the multivariate normal the parameter ¯̄̄ corresponds to the

idiosyncratic variance V = diag(vi). Its posterior distribution do not depend

on (a; b; f ) given ¹t, that is p(V ja; b; f; Á; ¹t;) = p(V j¹t; Á;). Since the
socks are independent then p(V j¹t; Á; !) =

Q
i p(Vij¹t; Ái;) with inverted

gamma distribution given by 5:

vri » GaI(T + n0; s0 +
X

i

êi;t); where êi;t = yi;t ¡ ÁriDt

Problem 4:

The posterior distribution of the parameters (a; b; f ) = (Ã1; Ã2; Ã3) in-

volved in the dynamic of ¹t will be accessed via a rejection algorithm. One

value of ªk is obtained sampling from the proposal distribution ª
r
k » N [ªr¡1k ; vk]

and the Kalman ¯lter used to get l(ªr). Comparing l(ªr) with l(ªr¡1) it

will be decided if the draw value is accepted or not.

3.3 Estimation for the other cases

The main modi¯cation involved in the estimation of the other model are:

² Alternatives 2 (MtSt) and 3 (tSt): the number of degrees of freedom
must be included in the step 4 of the former algorithm;

² Alternative 4 (Trim): the former algorithm must be used excluding

the step 2 and including the cutting factor in step 4. The likelihood in

step 4, l(ª), supouse that the variance of !ht is constant.

4The hypothesis that Ái = 0 tested at the 1% signi¯cance level. When not rejected the

coe±cient was set at the value zero. About 20 products, mainly agriculture products, have

Á signi¯cantly di®erent from zero. seasonal component were calculated only for productcs

that are present in the two samples, until 1999 and after
5The list of components of the in°ation index - IPCA - changes in 08/1999, from 350 to

512 items. The variance is estimated summing the squares deviation for the ¯rst sample

- until 08/1999 - and for the second one. For the new items we can not calculate the ¯rst

part. This component were approximated by the mean sum of squares of the products of

the same type

13



In the cases where p is not a multivariate normal distribution the results

obtained depend on the accuracy of the robust Kalman ¯lter as an approxi-

mation for the true evaluation of the distribution of ¹t. In the non-parametric

case - trimmed function - the approximation depends also on the hypothesis

of constant variance. Certainly the approximation is more crucial when we

are far way from the multivariate normal assumption.

When the in°uence function is multidimensional the matrix Q¡1t has rank

equal to the number of components involved. Since in the algorithm pre-

sented before this matrix must be inverted as many times as the Monte Carlo

sample size are and the periods of time the computational cost is almost in-

feasible. Nevertheless, this matrix has some properties that can ease the com-

putational burden. An alternative analytical expression is obtained in the

appendix. Expressions for the e±cient calculation of FFF 0g(êt) and FFFG(êt)FFF
0

are presented in the following table. It is worth mentioning the di®erence in

the in°uence function when the components are jointly or individually con-

sidered. In one case the expression depends on the ratio of the means and,

in the other case on the mean of the ratios.

Table 3: E±cient Expressions for Evaluation of In°uence Function

Models para p FFF 0g(êt) FFFG(êt)FFF
0

Mn Xt(1¡ ±t°) °(1¡ ±t°)
MtSt º+n

º+Zt
Xt(1¡ ±t°) (1¡ °±t) v¡mv+Zt

³
° ¡ 2X2

t (
1¡°±t
v+Zt

´

tSt (º + 1)
Qt[i;i]¡1ê2it
º+ê2itQt[i;i]

¡1 (º + 1)
(º¡ê2itQt[i;i]¡1)Qt[i;i]¡1

(º+ê2itQt[i;i]
¡1)2

where: ° =
P
i v
¡1
i ; ±t = (° + r

¡1
t )

¡1; Xt =
P
i êi;t and Zt =

P
i êi;tv

¡1
i .

In this paper we introduce a broad class of models including or not a

common trend component and its dynamics, the seasonal factors and dif-

ferent data generation descriptions. The number of parameters varies from

model to model so the model selection criterion must take into account this

fact. Gelfand and Ghosh (1998) developed a criterion with a solid decision

theoretical basis. Model complexity is penalized and a parsimonious choice

stimulated, in the spirit of penalized likelihood approaches, e.g. the now

popular BIC criterion due to Schwarz. This criterion, de¯ned on the predic-

tion space, includes two components: one is a measure of the goodness of

14



¯tting and the other is the variance of the predictive distribution and could

be interpreted as the punishment component. The use of the MCMC sam-

ples permit to take in account the uncertainties derived on the parameters

estimation and will be used to access the components mentioned above.

For the non-parametric models it is not possible to get the predictive

distribution expression since the matrix involved is not full rank. Then,

to make the comparisons possible we introduced the hypothesis of constant

predictive variance V (!ht ) = V!.

4 The Main Results

In this paper we deal with IPCA monthly observations in the period of

09/1994 to 05/2001. Clearly the same approach could be applied to any

in°ation index. Since di®erent assumption about the forecast horizon do

not impact too much the main results obtained, we decided to ¯x it in four

months.

The in°uence function and also the speci¯cation of the transition equa-

tion of the common trend are empirically accessed. The normal model do

not depend upon approximations in the evaluation of the common trend but

involves a large number of idiosyncratic variances. The t-Student model by

its turn has an in°uence function more reasonable given less weight for the

more extreme observations but its performance strongly depends on the ap-

proximation involved in the robust Kalman ¯lter and also on a large number

of idiosyncratic variances. The other speci¯cations of the in°uence function

correspond to procedure already presented in the core in°ation literature and

are not free of the approximations of the robust ¯lter.

The proposed model is °exible and can be estimated with four alterna-

tive speci¯cations for the error term and three di®erent speci¯cation for the

transition in the common component: i) the unrestricted case, corresponding

to the transitory component of the in°ation (T ), where the common trend

follows a mean reversion process; ii) the restricted case where the common

trend follows a random walk (P ), that is b = 1 and a = 0, measuring the

permanent component of the in°ation and, ¯nally, iii) the case where the

common component evolves unrestricted throughout time (C), which means

15



the current in°ation. The model can also be speci¯ed including (PS) or not

the seasonal factor.

In table 4, the expected likelihood function (L¡Lik) and the total vari-
ance (Tv) derived from the Gelfand and Ghosh criterion under square loss

function. The total variance is decomposed in a goodness of ¯tting measure

(Gv) and the predictive variance (Pv), Tv = Gv + Pv.

Table 4: Exact Performance Measures

Tv1=2 L¡ Lik
In°uence P T C TS P T C TS

Mn 0.524 0.519 0.591 0.522 45.3 46.3 -46.1 46.0

t-St 0.537 0.524 0.596 0.524 42.6 45.2 8.2 45.3

Mt-St 0.535 0.522 0.579 0.523 42.7 45.7 -38.3 45.6

In table 5 approximate results assuming constant predictive variance are

presented for all the models. In order to compare the di®erent core in°a-

tion measure proposed in the literature we also calculated the asymmetric

trimmed mean model.6 It is worth pointing out that the model C estimated

under the asymmetric trim corresponds exactly to the Cecchetti proposal.

Table 5: Approximate Performance Measures

Tv1=2 L¡ Lik
In°uence P T C TS P T C TS

Mn 0.398 0.387 0.740 0.389 95.2 99.5 48.6 99.6

t-St 0.431 0.396 0.585 0.398 89.1 99.1 66.3 98.5

Mt-St 0.428 0.391 0.720 0.392 89.6 98.6 50.7 98.1

Trim 0.402 0.384 0.480 0.388 94.5 98.7 81.5 97.8

TrimA 0.408 0.480 0.525 0.431 94.9 98.0 76.7 98.2

The main conclusions that can be drawn from the above results are:

6Although in this case the use of the robust Kalman ¯lter is not recommenced, since it

corresponds to an asymmetric in°uence function, we can interpret the result as a smoothed

asymmetric trim, see Fiorêncio and Moreira.
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² Assuming multivariate normality, the model T (transitory component)
presents the smallest total variance and the highest expected log like-

lihood. It is clearly the best model for those data set.

² The inclusion of seasonal e®ects is supported by both performance cri-
terion.

² Although the asymmetric trim presents reasonable results (expected

log-likelihood slightly smaller than the normal case) it is the worst

when the total variance is taken into account, probably due to the

uncertainty on the cutting point estimation.

² The model of current in°ation when estimated with the trim method

presents reasonable goodness of ¯tting variance, showing how strongly

it can smooth the data, as can be seen in table 6. Nevertheless, the

best performance from this point of view was obtained by the normal

transitory model (T ).

Table 6: Goodness of Fitting Variance (Gv) (100 £)
In°uence P T C TS

Mn 0.58 0.31 7.67 0.30

t-St 0.81 0.29 2.83 0.32

Mt-St 0.80 0.37 6.84 0.39

Trim 0.55 0.40 1.03 0.42

TrimA 0.45 0.20 0.98 0.27

All the above numerical estimates are based on the MCMC output. A

few hundred iterations seemed enough for the estimates to reach reasonable

stability. The convergence was access graphically and also via the Geweke

criterion. Actually, after convergence the remaining 1000 iterations are used

in the estimations. In table 7, the 95% posterior probability intervals were

presented for the hyperparameters. The full empirical posterior distribution

for the discount factor (f ) and for the other parameters of Normal Model are

presented in ¯gure 4.
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Table 7: Posterior Density Interval for transitory Normal Model

In°uence Mn Corr

Parameter P05 Mean P95 f a b

Discount factor (f) 0.60 0.75 0.88 1.00 -0.48 0.44

Transient Cons (a) 0.33 0.68 0.96 -0.48 1.00 -.22

AR(1) coe®. (b) 0.91 0.95 0.99 0.44 -0.22 1.00

Table 8: Posterior Density Interval for transitory Trim Models

In°uence Mn Corr

Parameter P05 Mean P95 f a b p

Discount factor (f) 0.51 0.60 0.72 1.00 -.35 0.41 0.27

Transient Cons (a) 0.58 0.74 0.93 -.35 1.00 0.07 0.10

AR(1) coe®. (b) 0.90 0.92 0.95 0.41 0.07 1.00 0.15

Trim percentile(p) 0.08 0.10 0.14 0.27 0.10 0.15 1.00

The conditional distribution of the common trend (¹tjªªª;t) and of the
future in°ation trend (!ht jªªª,t) can be obtained from the robust sequential

¯lter. Since our main interest is in the marginal distribution for (¹tjt) and
(!ht jt) the hyperparameters ªªª must be eliminated. The integral involved

can be solved numerically using the empirical distribution of the hyperpara-

meters got from the MCMC iterations after the elimination of some initial

values. The mean and variance of the above marginal distributions are given

by:

E[¹tjt] =
X

r

fE[¹tjªr;t]g=R and E[!ht jt] =
X

r

fE(!ht jªr;T )g=R

V [(¹tjT ] =
X

r

fV [¹tjªr;T ) + (E[¹tjªr;T ]¡E[¹tjT ])2gR

V [(!ht jT ] =
X

r

fV [!ht jªr;T ) + (E[!ht jªr;T ]¡ E[!ht jT ])2gR
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Figure 2: Model Assessment and Hyperparameters Posterior Distribution

(a) Marginal Predictive Likelihood, Autocorrelation Function and Trace
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In the following graphics we can appreciate the performance of the models

developed. In ¯gure 2, the observed values of !ht , the IPCA trend, and

its h = 4 months ahead forecast - E[!ht jt] - can be observed for the the
multivariate normal model and also for the asymmetric trimmed model. Both

¯gures include the Bayesian 95% probability intervals. One point to stress is

that the probability interval width do not increase around October 1999, a

well known period of high volatility in the economy. The con¯dence intervals

obtained with the trimmed models besides to be very narrow have an almost

constant width. The ¯rst comment must be due to the spurious uncertainty

elimination involved in the trimmed process and the second is related to the

hypothesis of constant variance associated with this class of model.

Figure 3: IPCA trend and E(!ht ) for Models Mn and Trim

In ¯gure 3, only the four months ahead point forecast are shown for the

multivariate normal and the asymmetric trimmed mean models. The three

lines represents, respectively, the point forecast obtained with the transitory

in°ation component model (T ), the permanent component model (P ) and the

current in°ation model (C). The models P and T have a similar behavior,

but the current in°ation is not useful for forecasting as far as it is not smooth

enough.
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Figure 4: E(!ht ) for Normal Models T , P , C and Trim Models

The posterior marginal distribution of the parameter involved in the sym-

metric trimmed mean model 7 - the cutting percentile - is presented in ¯gure

5 and shows how di±cult it is to estimate this quantity. In the model C -

current in°ation - this distribution has multiple modes. Therefore, to cut at

the 10% percentile is as good as to cut at 20% percentile or even at 30%.

Figure 5: Distribution of the Cutting Point - Symmetric Case (C) e (P )

7Estimated via a grid search over the sample space in Fiorêncio and Moreira (2000)
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5 Concluding Remarks and Extentions

There is a huge literature discussing alternative approaches to the measure-

ment of core in°ation, including various trimmed mean models (Cecchetti

and others) and smoothing techniques introduced by Cogley (1998). In this

paper we have introduced a large class of models which contemplate as spe-

cial cases the former measurement approaches as well as the dynamic factor

index model proposed by Bryan and Cecchetti (1993) and Cecchetti (1997).

The trend in°ation rate is de¯ned as the moving average of the future

headline in°ation rate, a slight variation on the Cecchetti's de¯nition. The

model proposed to forecast this quantity is composed by a common trend

component, a deterministic seasonal factor and idiosyncratic shocks. The

common trend dynamics is described as an autoregressive not excluding the

possibility of the mean reversion. A more fundamental advantage of the

proposed model is that it allows the idiosyncratic socks to be modeled by

a general class of multivariate probability distribution. The components of

the price index are taken as endogenous variables and their uncertain jointly

modeled. It is worth pointing out that in this model the common trend

in°ation and the mean of the future in°ation play di®erent games. The

former is, in same sense, a measurement of the current trend in°ation while

the latter is predictive in nature.

After state a so broad class of models it is natural to ask what were the

advantages obtained. Then, some ¯nal words are in order:

² The seasonal factor: the introduction of the seasonal factors do not
improve the forecasting capability of the model.

² Non-parametric model: the cutting point is a central quantity to ap-
ply the trimmed means models. Nevertheless it estimation is, often,

unstable. In the asymmetric trimmed means the posterior obtained

from the MCMC output is multi modal. All those comments suggest

that the parametric in°uence function models have a good chance of

succeeding.

² The form of the idiosyncratic socks distribution: the multivariate nor-

mal models are better in many aspects and do not depend on approxi-
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mations like that involved in the robust Kalman ¯lter. The comparative

study developed in this paper permits to conclude that for the IPCA,

in the period from 09/94 up to 05/01, there is no space for models

with heavy tails or even for trimmed means models. It is worth paying

attention to the fact that the components of the index have di®erent

volatility factors estimated from the data. The ¯tted t-Student models

are very close to Normal models since the estimated degrees of freedom

are so big.

² Common component dynamic: the dynamic evolution of the common
component does not include an unit root. Although the transitory

model has the best expected log-likelihood its total variation is bigger

than the permanent model, showing the limitation of this speci¯cation.

Finally, we pretend to validate the core in°ation measures obtained con-

sidering the di®erent criterion available in the literature.
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Appendix:

In this Section a brief summary of some methodological aspects will be present.

The mean an variance describing all the distributions involved in the Multivariate

Normal Dynamic Linear (DLM) models, the e±cient MCMC in normal DLM

proposed by FrÄuhwirth-Schnatter (1994) and some simpli¯cations associated with

the common component model.

A1 - Multivariate Common Component Dynamic Model

yyyt = ÁÁÁDDDt + FFF¹t + eeet
¹t = a + b(¹t¡1 ¡ a) + wt

where: eeet » p(¯̄̄) and wt » N [0; b2( 1f ¡ 1)V [¹t¡1jt¡1)].
Denoting by

² m0; C0, respectively the mean and variance of the posterior distribution at

time t = 0,

² yt; n £ l: the price changes for the products involved in the headline

in°ation,

² DDD : n £ 12 matrix of seasonal components, ¹t : 1 £ 1 common trend

component,

² et : n £ 1: idiosyncratic error term, F = (1; 1; :::1)0: a vector of unitary

constants.

Prior Distribution

E[¹tjt¡1] = a + b[E[¹t¡1jt¡1] ¡ a]

V [¹tjt¡1] = b2V [¹t¡1jt¡1]=f

Predictive Distribution

E[ytjt¡1] = FFFE[¹tjt¡1] + ÁÁÁDt

V [ytjt¡1] = V [¹tjt¡1] + VVV = Qt

As soon as the data vector yyyt is observed, the posterior distribution can be evalu-

ated, with mean and variance given by: Posterior Distribution

mt = E[¹tjt] = E[¹tjt¡1] + V [¹tjt¡1]FFF 0QQQ¡1êt

25



ct = V [¹tjt] = V [¹tjt¡1](1 ¡ V [¹tjt¡1])FFF 0QQQ¡1FFF (6)

where: êeet = yyyt ¡ FFF 0E[¹tjt¡1] ¡ ÁÁÁDDDt and QQQt = VVV + FFFV [¹tjt¡1]FFF 0.

A2 - The e±cient MCMC in normal DLM :

The ¯lter proposed by FrÄuhwirth-Schnatter (1994) is given by:

i) Let ht+1 = mT and Ht+1 = CT

ii) Sample xt+1 » N [ht+1;Ht+1], where xt+1 denote the state at time t + 1.

iii) Obtain:

ht = fI ¡ Bt+1Ggmt + Bt+1xt+1
Ht = fI ¡ Bt+1GgCt (7)

where: Bt+1 = CtG
0fGCtG

0 + W )¡1g

iv) Let t = t ¡ 1 and reapit (i) to (iii) till t = 0

Since Bt+1 = Ctbfb2Ct=f)¡1 = f=b the above equations simplify, for the model

in this paper, to:

ht = (1 ¡ f)mt + (f=b)xt+1 and Ht = (1 ¡ f )Ct

A3 { Predictive Variance

Let Zht =
Ph
i=1 g0t+izt+i, where zt = yt ¡ ÁDt = FFF 0¹t + et. Then the predictive

variance will be:

V [Zht jt;ª] =
hX

i=1

V [g0t+izt+ijt;ª] + 2
X

i<j

COV [(g0tzt+i; g
0
tzt+jjt;ª]

=
hX

i=1

V [g0t+izt+ijt;ª] + 2
X

i<j

bj¡iV [g0t+izt+ijt;ª]

Assuming conditional independence between the common component (¹t) and

the seasonal factor (Á), given the observed data and ª, it follows V [g0tÁjÃ] =

g0tV [ÁjÃ]gt = g0t(D
0D)¡1V gt = (D0D)¡1

P
i vig

2
it. Then we obtain

V [!ht jÃ) = V [Zht jÃ] + D
0
tV [g0tÁjÃ]Dt (8)
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A4 { E±cient Calculation of the Posterior Mean and Variance

The posterior mean and variance (6) depend upon the factors FFFQQQ¡1êt and

FFFQQQ¡1FFF 0. From the de¯nition of FFF and remembering that QQQt = FFF 0RtFFF + VVV , then

using a well known result in matrix theory it follows:

QQQ¡1
t = V ¡1 ¡ V ¡1FFF [FFF 0V ¡1FFF + R¡1

t ]¡1FFF 0V ¡1

Since: FFF 0V ¡1FFF =
Pn
i=1 v¡1i and qqq = V ¡1FFFFFF 0V ¡1 = (v¡1i v¡1j ), then it follows

QQQ¡1
t = V ¡1 ¡ qqq±t; where ±t = (

X
v¡1i + r¡1t )¡1; with rt = V [¹tjt¡1]

Denoting êt = yt ¡ ÁD ¡ FFF 0mt¡1 and remembering that in the normal case

g(êt) = QQQ¡1
t êt and G(êt) = QQQ¡1

t , it follows:

FFF 0g(êt) = FFF 0QQQ¡1
t êt =

X
êi;t[1 ¡ ±t

X
v¡1i ]

FFF 0G(êt)FFF = FFF 0QQQ¡1
t FFF =

X
v¡1i [1 ¡ ±t

X
v¡1i ] (9)

In the t-Student case similar calculation provides:

FFF 0g(êt) = K
X

i

êi;t[1 ¡ ±t
X

i

v¡1i ]

FFF 0G(êt)FFF = K

"X

i

v¡1i ¡ 2(
X

i

êi;t)
2(

1 ¡ ±t
P
i v
¡1
i

º +
P
i êi;tv

¡1
i

)

#
(10)

where: K = º+n
º+[

P
i
êi;tvi]¡1

.

27



Ipea – Institute for Applied Economic Research

PUBLISHING DEPARTMENT

Coordination
Cláudio Passos de Oliveira

Supervision
Everson da Silva Moura
Reginaldo da Silva Domingos

Typesetting
Bernar José Vieira
Cristiano Ferreira de Araújo
Daniella Silva Nogueira
Danilo Leite de Macedo Tavares
Diego André Souza Santos
Jeovah Herculano Szervinsk Junior
Leonardo Hideki Higa

Cover design
Luís Cláudio Cardoso da Silva

Graphic design
Renato Rodrigues Buenos

The manuscripts in languages other than Portuguese  
published herein have not been proofread.

Ipea Bookstore

SBS – Quadra 1 − Bloco J − Ed. BNDES, Térreo 
70076-900 − Brasília – DF
Brazil
Tel.: + 55 (61) 3315 5336
E-mail: livraria@ipea.gov.br





Composed in Adobe Garamond 11/13.2 (text)
Frutiger 47 (headings, graphs and tables)

Brasília – DF –  Brazil





Ipea’s mission
Enhance public policies that are essential to Brazilian development by producing 
and disseminating knowledge and by advising the state in its strategic decisions.


	contra capa.pdf
	Página em branco
	Página em branco
	Página em branco
	Página em branco
	Página em branco


