Crescimento econômico e setor financeiro no Brasil *

ANTÔNIO CARLOS PÓRTO GONÇALVES **

Neste trabalho, um modelo simplificado é formulado para estudar as relações entre os investimentos e, portanto, o crescimento econômico, a emissão de dívida interna e, desse modo, a taxa de inflação, a correção monetária e os subsídios ao crédito para investimento. Uma conclusão importante é que a correção monetária e os subsídios aos financiamentos para aplicações podem ter um efeito negativo sobre a taxa de crescimento da economia; e a correção monetária ótima, que maximiza a taxa de crescimento, pode ser bem inferior à taxa de inflação.

1 — Introdução

O pagamento de serviços (inclusive de correção monetária) sobre a dívida interna brasileira (definida de maneira ampla, a ser explicitada mais adiante) tem pressionado o orçamento (também definido de modo amplo) do Governo, constituindo-se num item efetivo de despesas cada vez mais importante. Paralelamente, os subsídios ao crédito, processo pelo qual o sistema financeiro estatal empresta a um custo menor do que incorre na captação, pressionam mais ainda o orçamento governamental. E para reduzir os deficits contínuos (e as conseqüentes tendências inflacionárias) o Governo se vê obrigado a fazer cortes orçamentários, sobretudo nos itens de investimento, devido à relativa incompressibilidade dos seus gastos correntes.

O presente trabalho visa a analisar o problema exposto acima, em particular as relações entre os investimentos (e, portanto, o cres-

* O autor agradece a Adroaldo Moura da Silva, Francisco Lopes, Paulo Guedes e ao editor desta Revista, que criticaram e melhoraram uma versão anterior deste trabalho.

** Professor da EPGE/FGV.

Pesk. Plan. Econ. Rio de Janeiro, 10 (3) 955 a 970 dez, 1980
cimento econômico, a dívida pública interna, a correção monetária e o subsídio ao crédito. Trata-se, na realidade, de uma generalização de um estudo de Mundell, no qual este economista procura determinar o potencial máximo da emissão monetária como forma de o Governo obter recursos para financiar investimentos, promovendo o crescimento econômico.¹

No Brasil, com a introdução da poupança compulsória, dos títulos da dívida pública e da correção monetária, alguns economistas — por exemplo, Campos e Simonsen² — afirmaram que se tornou desnecessário financiar os investimentos através da emissão monetária, o que teria reduzido ou acabado com o problema da tendência inflacionária decorrente dos contínuos deficits governamentais. No entanto, os pagamentos de serviços sobre a dívida pública (interpretada de modo amplo, incluindo a poupança compulsória) e os subsídios ao crédito tendem a expandir o deficit do Governo, provocando pressões no sentido de maiores emissões monetárias, ou de dívida pública, ou ainda pressões para efetuar cortes nos gastos governamentais.³ O trabalho aqui apresentado procura sistematizar essas relações, através de uma generalização do mencionado estudo de Mundell. Para analisar o problema, isolando-o de complicações puramente acessórias, são feitas várias hipóteses simplificadoras, definindo-se uma economia estabilizada.

2 — A economia estilizada

Imagine-se uma economia em que os investimentos, públicos e privados, são inteira e exclusivamente financiados pelo Governo Federal. Este funciona como um grande intermediário financeiro, obtendo os recursos necessários para emprestar das suas rendas de capital e através da expansão da base monetária, da emissão de títulos públicos e da poupança forçada (isto é, de mecanismos institucionais semelhantes ao FGTS e ao PIS/PASEP). Os detentores de títulos públicos e os titulares dos depósitos de poupança forçada recebem juros, incluindo uma parcela de correção monetária. Assim, por exemplo, se B fosse o saldo nominal total dos títulos públicos, do FGTS e do PIS/PASEP — e poderíamos também incluir aqui as cadernetas de poupança, pois, sendo garantidas pelo Governo, em última análise constituem um passivo do mesmo —, o Governo estaria pagando um fluxo de juros igual a iB. A taxa de juros i contém um componente de correção monetária.4

Os recursos levantados pelo Governo Federal, da maneira descrita acima, são integralmente emprestados, por tempo indeterminado e a uma taxa de juros subsidiada, às empresas privadas e públicas e aos governos locais, para financiar os investimentos totais da economia. Sendo H a base monetária num certo momento e B a dívida interna definida no parágrafo anterior, o Governo Federal recebe, dos seus devedores, juros no valor de $s(B + H)$, onde s é a taxa de juros subsidiada, possivelmente abaixo da taxa de inflação, e $(B + H)$ é o saldo acumulado dos empréstimos feitos. As empresas públicas, por hipótese (simplificadora), não pagam nenhum dividendo ao Governo Federal, que não tem nenhum outro rendimento de capital, afora o $s(B + H)$ já mencionado.

Embora essa economia possa parecer muito simplificada, o leitor informado notará que o modelo incorpora inúmeros elementos de descrições recentes da economia brasileira. Resta completar e desenvolver analiticamente essa economia estilizada.

4 A receita fiscal é suposta igual às despesas de consumo do Governo. A hipótese é meramente simplificadora, permitindo que o modelo se concentre na questão da correção monetária, dos subsídios e dos recursos para financiar o crescimento.
Das hipóteses formuladas, podemos concluir que o investimento real é dado pela seguinte equação:

\[\dot{K} \frac{\dot{H}}{P} + \frac{\dot{B}}{P} - i \frac{B}{P} + \delta \left(\frac{H}{P} + \frac{B}{P} \right) \quad (1) \]

onde:

- \(K \) = estoque de capital;
- \(H \) = base monetária;
- \(P \) = nível geral de preços; e
- \(B, i \) e \(s \) já foram definidos anteriormente, enquanto o ponto sobre qualquer símbolo indica derivada em relação ao tempo.

O estoque de capital e o produto da economia estão relacionados da seguinte forma:

\[Y = rK \quad (2) \]

onde:

- \(Y \) = produto real; e
- \(r \) = relação produto/capital, considerada constante.

A constância de \(r \) pode ser interpretada como uma restrição tecnológica, ou, então, a relação produto/capital pode ser considerada constante porque a economia está evoluindo em estado estacionário; neste último caso, \(r \) seria algo como uma taxa de retorno real, calculada sobre o capital físico. Estas possíveis interpretações são desenvolvidas em Allen.\(^5\) No presente trabalho, vamos adotar a segunda interpretação.

Duas outras relações do modelo definem a demanda de moeda do público e a de títulos e a haveres da dívida interna:

\[\frac{M}{P} \cdot V = Y \quad (3) \]

\[\frac{B}{P} = fK \quad (4) \]

onde:

\[M = \text{estoque de moeda}; \]

\[V = \text{velocidade-renda de circulação da moeda}; \]

\[f = \text{relação, desejada pelo público, entre a dívida interna e o estoque de capital.} \]

A velocidade \(V \) e a relação \(f \) são funções da taxa de inflação \(\pi \) e da taxa de juros \(i \), do seguinte modo:

\[V = v (\pi, i) \]

\((\dagger) \quad (+) \) \hspace{1cm} \hspace{1cm} (5) \]

\[f = f (\pi, i) \]

\((-) \quad (+) \) \hspace{1cm} \hspace{1cm} (6) \]

onde os símbolos \((\dagger) \) e \((-) \) indicam os sinais das derivadas parciais. \(^6\)

Combinando-se as equações (2) e (3), obtemos:

\[\frac{H}{P} = hK \]

(7)

onde \(h = \frac{r}{mV} \), sendo \(m \) o multiplicador da oferta monetária, que varia positivamente com \(\pi \) e com \(i \), de sorte que, considerando a equação (5), podemos escrever:

\[h = h (\pi, i) \]

\((-) \quad (-) \) \hspace{1cm} \hspace{1cm} (8) \]

As equações (1), (2), (4), (6), (7) e (8), repetidas a seguir, descrevem a economia estilizada:

\[\dot{K} = \frac{H}{P} + \frac{B}{P} - i \frac{B}{P} + s \left(\frac{H}{P} + \frac{B}{P} \right) \]

(1)

\(^6\) Um aumento da inflação diminui a demanda de moeda e de títulos e um aumento dos juros \(i \) também reduz a demanda de moeda, mas aumenta a de títulos. Pela lei de Walras, uma vez equilibrados os mercados de moeda e de títulos, a demanda e a oferta de capital estarão também equalizadas.

Crescimento Econômico e Setor Financeiro
\[Y = rK, \text{ } r \text{ constante} \] \hspace{1cm} (2)

\[\frac{B}{P} = \dot{f}K \] \hspace{1cm} (4)

\[f = f(\pi, i) \] \hspace{1cm} (6)

\[(-) \text{ } (+) \]

\[\frac{H}{P} = \dot{h}K \] \hspace{1cm} (7)

\[h = h(\pi, i) \] \hspace{1cm} (8)

\[(-) \text{ } (-) \]

3 — Desenvolvimento analítico

Vamos supor que a economia em questão esteja em estado estacionário. Assim, os preços e as quantidades reais crescem às taxas constantes \(\pi \) e \(g \), respectivamente. A taxa de juros \(i \) permanece constante. Nestas circunstâncias, \(f \) e \(h \) também permanecem constantes. Logo, das equações (4) e (7), deduzimos que as taxas de expansão da base monetária \(H \) e da dívida interna \(B \) são iguais a \((\pi + g) \), isto é, são iguais à taxa de inflação mais a taxa de crescimento (do estoque de capital e, pela equação (2), também do produto). Formalmente:

\[\mu = \pi + g \] \hspace{1cm} (9)

onde \(\mu \) é a taxa de expansão de haveres nominais (base monetária e dívida pública).

Dividindo ambos os lados da equação (1) por \(K \), podemos obter:

\[\frac{\dot{K}}{K} = \frac{\dot{H}}{PK} + \frac{\dot{B}}{PK} - \frac{B}{PK} + \frac{H}{PK} + \frac{B}{PK} \] \hspace{1cm} (10)

7 O que já havia sido sugerido pela hipótese da constância de \(r \), feita anteriormente.
Temos ainda que:

\[\frac{\dot{K}}{K} = g \]

Considerando as equações (7) e (9):

\[\frac{\dot{H}}{PK} = h \frac{\dot{H}}{H} = h \mu = h (\pi + g) \]

\[\frac{\dot{H}}{PK} = h \]

Considerando as equações (4) e (9):

\[\frac{\dot{B}}{PK} = f (\pi + g) \]

\[\frac{B}{PK} = f \]

Estes valores, substituídos na equação (10), levam a:

\[g = \frac{h + f}{1 - (h + f)} (\pi - i + s) + \frac{h}{l - (h + f)} i \]

Fazendo \(t = h + f \), isto é, sendo \(t \) a relação entre a dívida interna do Governo - avaliada no sentido mais amplo possível, pois inclui até a base monetária - e o estoque de capital físico, obtemos:

\[g = \frac{t}{l - t} (\pi - i + s) + \frac{h}{l - t} i \] (11)

ou

\[g = \frac{t}{l - t} [\pi + (\pi - i) - (\pi - s)] + \frac{h}{l - t} i \] (11a)

sendo \(f \) e \(h \) funções de \(\pi \) e de \(i \) - equações (6) e (8) - obviamente \(t \) também será função de \(\pi \) e de \(i \).

As equações (11) e (11a) constituem o resultado central do modelo e permitem uma série de exercícios de estática comparativa.
entre duas economias estilizadas, evoluindo em estado estacionário, mas com diferentes taxas de inflação, de juros pagos pelo Governo sobre a dívida interna e de juros subsidiados.

4 — Comparações com a economia brasileira: os subsídios ao crédito

Para se ter uma idéia dos valores de t e de h na economia brasileira, basta consultar os boletins do Banco Central. Supondo uma relação produto/capital r de um terço, chegamos ao resultado de que t é aproximadamente igual a 0,12 e h a 0,01.\footnote{Na estimativa de t foram incluídos os saldos de ORTN e LTN fora das Autoridades Monetárias, o saldo do FGTS, FIS/FASEP, a base monetária (inclusive depósitos à vista nas Autoridades Monetárias) e os depósitos de poupança, ligados que são ao Sistema Financeiro da Habitação. Enfim, foi levada em consideração a dívida interna no sentido lato.} Nessas circunstâncias,

$$
\frac{t}{1 - t} \cong 0,14 \quad e \quad \frac{h}{1 - t} \cong 0,012.
$$

E concluímos que, na equação (11), o coeficiente do segundo termo do lado direito da igualdade é bem pequeno em relação ao coeficiente do primeiro. Além do mais, a ordem de grandeza de $(\pi - i + s)$ é a mesma de i. Desse modo, em primeira aproximação, o último termo pode ser desprezado quando se aplica essa equação ao Brasil. Com a simplificação, temos:

$$
g \cong 0,14 \ (\pi - i + s) \tag{12}
$$

ou

$$
g \cong 0,14 \ [\pi + (\pi - i) - (\pi - s)] \tag{12a}
$$

A equação (12a) mostra a relação entre a taxa de crescimento g, a taxa de inflação, a diferença entre a inflação e o pagamento de juros sobre a dívida interna e a diferença entre a inflação e os juros cobrados nos empréstimos subsidiados. É uma equação simplificada, pois, além do abandono do último termo da equação (11), o
coeficiente 0,14 está sendo considerado constante, quando este não é o caso — seu valor depende de \(\pi \) e de \(i \).

De qualquer modo, a equação (12a), deduzida do modelo, mostra que o subsídio ao crédito reduz a taxa de crescimento da economia, pela simples razão de que o volume de recursos à disposição do Governo, para investimento, diminui. Quando o subsídio \((\pi - s) \) é reduzido em 7% a.a., a taxa anual de crescimento econômico \(g \) aumenta em 1%, aproximadamente. Este resultado pode parecer paradoxal, pois ao subsidiar o empresário o Governo, supostamente, estaria incentivando o investimento e, portanto, o crescimento econômico. Mas em nossa economia estilizada o Governo, como intermediário financeiro, é a única fonte de recursos para investimento, ou seja, em vista da possibilidade de obter crédito subsidiado, o empresário deixa de investir seus próprios fundos, desviando-os totalmente para o consumo próprio e usando os recursos governamentais. Trata-se, naturalmente, de uma hipótese extrema, pois supor o desvio total para consumo deve ser irrealista. No entanto, se a propensão marginal a consumir for de 80%, por exemplo, a hipótese feita não é descabida. O ganho de rendimento obtido pelos que têm acesso ao crédito subsidiado seria usado, em 80%, para aumentar o consumo. E este aumento, afirma os aspectos cruciais de justiça social que encerra, reduziria o crescimento econômico.

Assim, na verdade, uma hipótese básica por trás do resultado obtido é de que o mecanismo de crédito subsidiado leva o empresário a deixar de investir seus fundos e a expandir o consumo próprio; por outro lado, uma diminuição no subsídio ao crédito aumenta os recursos à disposição do Governo, que os direciona para investimento, e não para consumo.

5 — A correção monetária ótima

Vamos agora voltar a atenção para o termo \((\pi - i) \) na equação (11) e determinar a correção monetária ótima, isto é, o valor de \((\pi - i) \) que maximiza a taxa de crescimento \(g \). Para tal, é preciso considerar que, quando \((\pi - i) \) aumenta, \(t/(l - t) \) diminui.

Crescimento Econômico e Setor Financeiro 963
Como hipótese simplificadora, vamos admitir que a variável t seja função apenas da diferença $(\pi - i)$, ou seja, aumentando π e i no mesmo valor, t não se altera, pois a proporção, desejada pelo público, entre a dívida interna, no sentido lato, e o estoque de capital é função apenas da taxa de juros "real". Essa hipótese não é muito restritiva. Em geral, quando π e i aumentam simultaneamente, o público tende a diminuir sua retenção de caixa e a aumentar a de outros haveres financeiros, inclusive títulos do Tesouro, cadernetas, etc. Logo, a proporção entre a dívida interna, no sentido lato, e o estoque de capital tende a ficar inalterada desde que $(\pi - i)$ permaneça constante. Em particular, vamos supor a seguinte forma funcional para t:

$$t = A \exp \left[-\alpha (\pi - i) \right], \quad A > 0, \quad \alpha > 0 \quad (13)$$

onde A e α são constantes e \exp indica a função exponencial.

O aspecto da relação definida pela equação (13) pode ser visto no Gráfico 1.

Podemos então calcular o valor de $(\pi - i)$ que maximiza g na equação (11), supondo s constante, ou seja, vamos calcular a correção monetária ótima, dada uma certa taxa de juros s cobrada pelo Governo sobre seus empréstimos. Combinando as equações (11) e (13), desprezando o último termo da equação (11), por ser bem menor que o anterior, e derivando, podemos obter:

$$\frac{\partial g}{\partial (\pi - i)} = \frac{t}{1 - t} \left[1 - \frac{\alpha}{1 - t} (\pi - i + s) \right]$$

A expressão acima só será nula quando:

$$(\pi - i) = \frac{1 - t}{\alpha} - s$$

Assim, o valor $(\pi - i)$ que maximiza g será positivo desde que α não seja um número grande, o que aliás deve ser o caso brasileiro, isto é, no Brasil a correção monetária ótima, em termos de maximização do crescimento, deve ser incompleta – sendo a taxa de inflação superior à taxa de juros paga sobre a dívida – como veremos adiante.
O Gráfico 2 mostra o comportamento de g quando \((\pi - i)\) varia. Obviamente, essa característica de correção monetária ótima inferior à inflação foi deduzida usando-se a forma funcional expressa na equação (13) e supondo que \(\alpha\) não é um número excessivamente alto. No Brasil atual, o valor de \(\alpha\) — representando a variação percentual de \(t\) quando \((\pi - i)\) varia 1% — não deve ser muito alto, pois existe uma boa parcela de poupança compulsória (FGTS, PIS/ PASEP) tendendo a tornar \(t\) inclástico em relação às variações em \((\pi - i)\).

Crescimento Econômico e Setor Financeiro
Com o objetivo de ilustrar esses resultados, vamos substituir os parâmetros nas equações (11) e (13) por valores observados na economia brasileira. No início de 1979, \((\pi - i) = 0\) e o valor de \(I\) era de 0,12. Logo, na equação (13) podemos fazer \(A = 0,12\). Tomemos o valor de \(s = 30\%\) para a taxa média de juros subsidiados. Resolvendo o problema de máximo, podemos montar a seguinte tabela:

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>((\pi - i)^*) (%)</th>
<th>(g^*) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>63</td>
<td>6,4</td>
</tr>
<tr>
<td>1,5</td>
<td>33</td>
<td>4,9</td>
</tr>
<tr>
<td>2,0</td>
<td>16</td>
<td>4,4</td>
</tr>
<tr>
<td>2,5</td>
<td>6</td>
<td>4,1</td>
</tr>
<tr>
<td>3,0</td>
<td>1</td>
<td>4,1</td>
</tr>
</tbody>
</table>

Pesq. Plan. Econ. 10(3) dez. 1980
Para valores de π no intervalo de 0 a 3, aproximadamente,
$(\pi - i)^* \text{ será positivo. Um valor de } \pi = 2 \text{ significa que, quando }$
i diminui 1% (de 50 para 49%, por exemplo), a proporção desejada da dívida interna em relação ao estoque de capital cai em
2% de seu valor. Devido à importância do FGTS e do PIS/PASEP
in conceito de dívida interna relevante neste trabalho — a poupança compulsória constitui cerca de 50% da dívida interna consi-
derada —, provavelmente t é bastante inelástico. Assim, é também
provável que π se situe nessa faixa de 0 a 3, significando que a
taxa de crescimento g seria maximizada com uma correção mo-
teária menor que a inflação. O g máximo alcançável varia na faixa
de 4 a 6,5% ao ano, conforme mostra a tabela.

A principal conclusão deste exercício é que a fixação da correção
monetária abaixo da taxa de inflação provavelmente tende a au-
mentar os recursos à disposição do Governo (e, se este investir, a
aumentar a taxa de crescimento econômico), devido ao grande com-
ponente de poupança compulsória na dívida pública (definida no
sentido lato). Mas o aumento ocorre até um certo ponto. Daí em
diante, reduções adicionais na correção diminuem a aceitação de
títulos e cadernetas por parte do público, reduzem os recursos à
disposição do Governo e, se este insistir em manter o mesmo nível
de gastos, provocam déficits orçamentários contínuos, acompanhados
de tendência inflacionária.

Aliás, esse processo já foi vivido pela economia brasileira no início
dos anos 60, quando a remuneração fixa dos títulos públicos, num
ambiente de inflação crescente, dificultava, ou mesmo impedia, a
sua colocação no mercado. Mas o estabelecimento da correção mo-
teária plena, na segunda metade da década de 60, talvez tenha sido
um exagero, no sentido de que a maximização do volume de re-
cursos à disposição do Governo exigiria uma correção menor do
que a plena.

8 Os valores da tabela foram calculados supondo $s = 30%$: $(\pi - i)^*$ tende
a diminuir com aumentos de s, e g^* tende a variar positivamente com s (isto
é, com a diminuição do subsídio ao crédito).

Crescimento Econômico e Setor Financeiro 967
6 — Inflação, correção monetária e subsídios ao crédito

Combinando as equações (11a) e (13), repetidas abaixo por conveniência — a equação (11a) sem o último termo:

\[g = \frac{t}{1 - t} \left[\pi + (\pi - i) - (\pi - s) \right] \]

\[t = A \exp \left[-\alpha (\pi - i)\right] \]

podemos verificar que não é possível sustentar uma certa taxa de crescimento econômico \(g\), manter um grau constante de subsídio ao crédito \((\pi - s)\) e de correção monetária \((\pi - i)\) e, ao mesmo tempo, reduzir a taxa de inflação \(\pi\), pois a redução em \(\pi\) diminui os recursos disponíveis para o Governo fazer seus investimentos.\(^{10}\)

E se não houver uma diminuição no grau de correção monetária, através de um aumento em \((\pi - i)\), ou no grau de subsídio ao crédito, através de uma redução em \((\pi - s)\), a inflação só poderá ser diminuída se a taxa de crescimento da economia for sacrificada.

Obviamente, não é possível aumentar \((\pi - i)\) indefinidamente, pois, como vimos na seção anterior, existe um valor ótimo \((\pi - i)^*\), provavelmente positivo nas atuais circunstâncias da economia brasileira, e tal que \(\pi - i^*\) exceder esse valor ótimo os recursos obtidos pelo Governo, para investimento, se reduzem, devido à dificuldade de colocação da dívida pública no mercado.

De modo semelhante, não é possível diminuir indefinidamente \((\pi - s)\), retirando todo o subsídio ao crédito e mesmo tornando \((\pi - s)\) bastante negativo, porque, neste caso, o empresário privado poderia reduzir seus investimentos, e a taxa de eficiência marginal do investimento, no sentido keynesiano do termo, poderia ficar abaixo de \((s - \pi)\). Assim, o componente de investimento privado poderia ser muito sacrificado se houvesse um exagero na redução dos subsídios ao crédito. Apenas o setor de empresas estatais conti-

\(^{10}\) Observe-se que, se \((\pi - i)\) permanecer constante, pela equação (13), \(t\) não se altera quando \(\pi\) varia.
numa investindo, já que, possivelmente, o faz independentemente das considerações das expectativas que tanto influenciam a eficiência marginal do investimento privado.

7 — Sumário e conclusões

Numa economia em que o Governo atua como único agente financeiro dos investimentos públicos e privados, a taxa de crescimento depende crucialmente dos recursos à sua disposição. Estes podem ser aumentados de acordo com os seguintes fatores: a) pela redução dos gastos de consumo do Governo; b) pelo aumento de impostos, inclusive o imposto inflacionário; c) pelo aumento da taxa de juros s cobrada das empresas investidoras; ou, ainda, d) pela redução da taxa de juros i paga sobre a dívida pública interna. O presente trabalho mostrou como o imposto inflacionário, a taxa π, e as taxas de juros i e s se relacionam com a taxa de crescimento g da economia. As equações (11), (11a) e (11b), onde π, i e s aparecem com os sinais esperados, sintetizam essa relação no estado estacionário.

A aplicação desse resultado à economia brasileira atual sugere que:

a) O conceito de dívida pública interna, relevante para a análise de crescimento, deve incluir os saldos de poupança compulsória e de outras fontes de recursos carreados, direta ou indiretamente, para o Governo Federal, ou seja, deve ser bastante amplo. E tanto as receitas quanto as despesas com a dívida devem ser consideradas ao se estudar o orçamento do Governo, isto é, a administração criteriosa do subsídio ao crédito, bem como da correção monetária, são importantes para o orçamento do Governo e o crescimento da economia.

b) Aumentos nos subsídios ao crédito, para financiar investimentos, podem reduzir a taxa de crescimento da economia, na medida em que, em lugar de investir seus próprios fundos, as empresas tendem a aplicá-los em consumo de seus donos e empregados graduados, utilizando para investir os recursos subsidiados pelo Gover-
no. E este, por outro lado, recebendo menor receita de juros sobre o que emprestou, fica com menos fundos para investir, o que diminui a taxa de crescimento da economia.

c) Além das possíveis dificuldades recessivas transitórias, consequentes de uma política ortodoxa de diminuição da inflação, um problema adicional causado por esta diminuição seria uma queda nos investimentos e no crescimento da economia, a menos que o grau de subsídio ao crédito \((\pi - s)\) ou o de correção monetária \((i - \pi)\) fossem reduzidos.

d) Provavelmente, uma boa maneira de compensar a queda em crescimento, consequente de uma redução da receita inflacionária do Governo, seria diminuir os subsídios ao crédito, com cuidado para não levar tais diminuições a exageros, ao sacrifício, parcial ou total, do componente privado dos investimentos no País. Este sacrifício poderia acontecer num ambiente de expectativas em que a eficiência marginal do investimento estivesse baixa.

e) Reduzir a correção monetária sobre a dívida interna também poderia ser, pelo menos até um certo ponto, uma maneira de compensar quedas na receita inflacionária, pois existe um valor \((\pi - i)^*\) que maximiza \(g\), ou seja, um ponto ótimo além do qual reduções adicionais na correção diminuem os recursos disponíveis para investimento. Provavelmente, na economia brasileira atual, este ponto é tal que \((\pi - i)^* > 0\), sendo a correção monetária ótima inferior à taxa de inflação.

f) A análise foi toda desenvolvida no pressuposto de que os gastos correntes do Governo são iguais às suas receitas fiscais e de que, além disso, um aumento nos recursos à sua disposição não seria usado para expandir seu consumo, ou seja, o modelo procura ligar o setor financeiro da economia, onde o Governo é, por hipótese, o único intermediário, com o investimento e o crescimento econômico. Abstrai-se, portanto, das possibilidades fiscais de promover o crescimento via aumento de impostos, compressão de gastos correntes, etc., tudo com o objetivo de obter mais recursos para investir. Simetricamente, a atuação do Governo no campo financeiro é considerada independente de seus gastos correntes.

(Originals recebidos em fevereiro de 1980. Revisados em julho de 1980.)