TEXTOS PARA DISCUSSÃO INTERNA

Nº 5

Curva de Phillips e o Modelo de Realimentação: Será Friedman um Neo-Estruturalista?

Fernando de Holanda Barbosa
Julho de 1979
CURVA DE PHILLIPS E O MODELO DE REALIMENTAÇÃO:

SERÁ FRIEDMAN UM NEO-ESTRUTURALISTA?

Fernando de Holanda Barbosa

1 - INTRODUÇÃO

O segundo objetivo deste trabalho é proceder a uma análise crítica da afirmação feita por Lopes (1979) de que o modelo de realimentação gera uma curva de Phillips de longo prazo não vertical. Baseado nesta propriedade Lopes classifica o modelo de realimentação como um modelo neo-estruturalista. Mos-

* Do Instituto de Pesquisas do IPEA.

Lopes (1979, p. 26) afirma que o modelo de realimentação de Simonsen "pode ser considerado neo-estruturalista porque utiliza os principais elementos da teoria da CEPAL, a saber: as noções de pressão inflacionária estrutural (advinda de ajustamentos em preços relativos) e de mecanismos de propagação (que aqui recebe o nome de realimentação), com uma especificação estrutural da ligação entre demanda agregada e inflação (isto é, uma especificação compatível com uma curva de Phillips de longo prazo não vertical)."
traremos, adotando a interpretação a nosso ver incorreta de Lem gruber e Lopes, que o modelo de realimentação de Simonsen cons-titui-se em um caso particular da curva de Phillips, proposta por Friedman (1970), que engloba, também, a curva de Phillips tra-dicional. Ademais, veremos que o modelo de realimentação corres-ponde a um caso particular que certamente contém hipótese bas-tante forte sobre a realidade, pois implica num processo instá-vel e explosivo. Contrariamente ao sugerido por Lopes, o mode-lo de realimentação produz, como demonstraremos a seguir, uma curva de Phillips vertical no longo prazo, quando o coeficiente de realimentação é unitário.

2 - CURVA DE PHILLIPS VERSUS MODELO DE REALIMENTAÇÃO

O modelo de realimentação admite que a taxa de inflação p_t resulta de três componentes aditivos: i) autônomo α, ii) realimentação βp^e_t, e iii) regulagem de demanda $\gamma (D_t - D^*_t)$; isto é:

\[
(2.1) \quad p_t = \alpha + \beta p^e_t + \gamma (D_t - D^*_t)
\]

As letras gregas α, β e γ representam parâmetros. O símbolo p^e_t, no contexto do modelo de realimentação, indica inflação passada ($p^e_t = p_{t-1}$). A variável D_t é o crescimento da demanda efetiva.
ex-ante, $D_t = \log (e_t / y_{t-1})$, e y_{t-1} é o produto efetivo no período $t-1$. Quanto ao termo D_t^* Simonsen o define como sendo igual à taxa de crescimento da demanda efetiva ex-ante que tornaria a taxa de inflação nula se as componentes autônomas e de realimentação fossem nulas.

No curto prazo, a demanda efetiva ex-ante pode divergir do produto efetivo, $e_t \neq y_t$. Obviamente, ex-post, a demanda efetiva observada d_t é igual ao produto efetivo y_t como medido, por exemplo, nas contas nacionais. Entretanto, do ponto de vista teórico, no modelo de realimentação, o que importa é a taxa de crescimento da demanda efetiva ex-ante que é uma variável não observável na prática. Este fato torna a estimação da equação estrutural (2.1) impossível. Todavia, este problema pode ser superado. Com efeito, a demanda efetiva ex-ante resulta, numa economia fechada, da soma do consumo, do investimento e dos gastos do governo. De uma maneira bastante geral a demanda efetiva é função do nível de renda y e de outras variáveis que representaremos pelo símbolo x, isto é:

$$e = e(y, x)$$

Simonsen reconhece este problema quando observa que "O ponto a indagar é em que termos deve ser averiado o crescimento da procura para a especificação da componente de regulagem. A resposta teoricamente mais convincente consistiria em medi-la ao nível de preços resultante das componentes autônomas e de realimentação da inflação. É claro que não existem dados estatísticos sobre o crescimento da procura conceituado nesses termos. O melhor que se pode fazer é utilizar os índices de crescimento do produto real como aproximadores dessas taxas". Nesta última frase Simonsen nos parece ter dado margem a interpretações do tipo Lengrubher-Lopes. Todavia esta é uma hipótese que reflete uma aproximação empírica, a nós so ver inapropriada, como ficará claro mais adiante.
Uma aproximação em termos de taxas para a equação acima pode ser escrita como:

\[(2.3) \quad \Delta e_t = \theta_y \Delta y_t + \theta_x \Delta x_t\]

onde \(\theta_y\) e \(\theta_x\) são parâmetros e o símbolo \(\Delta\) indica taxas de crescimento.

Substituindo-se a equação (2.3) em (2.1), em seguida rearranjando-se alguns termos, obtém-se a seguinte expressão:

\[(2.4) \quad p_t = \alpha + \beta \cdot p_t^e + \gamma \cdot \frac{\Delta y_t}{\theta_y} + \gamma \cdot \theta_x \cdot \Delta x_t\]

A taxa de inflação na equação acima é função de variáveis que são observáveis, o que torna possível a sua estimativa.\(^3\) Vale salientar que \(\theta_x \cdot \Delta x_t\) na verdade representa o produto escalar de um vetor (linha) de parâmetros por um vetor (coluna) de variáveis que entram na especificação da equação de demanda efetiva (2.3).

A curva de Phillips tradicional é representada por uma equação do tipo:

\[(2.5) \quad p_t = \alpha' + \beta' \cdot p_t^e + \gamma' \cdot \log \left(y_t/y_t^* \right)\]

onde \(y_t^*\) é o produto potencial da economia, e os demais símbolos têm o mesmo significado anterior.\(^4\)

Lengrub e Lopes ao compararem as equações (2.4) e (2.5) admitem implicitamente que o vetor \(\theta_x\) é um vetor nulo (ou que \(\Delta x_t = 0\)). Daí, concluírem que a diferença entre o modelo de regularização e a curva de Phillips tradicional reside na especi-

\(^3\)Estamos desconsiderando os problemas de interpretação do termo \(\Delta e_t^*\). Uma interpretação seria a da taxa antecipada de crescimento de demanda.

\(^4\)No caso de expectativas estáticas: \(p_t^e = p_{t-1}\).
ficação do termo contendo o produto efetivo. Enquanto no modelo de realimentação a variável relevante seria a taxa de crescimento do produto, na curva de Phillips a variável relevante é o nível do produto.

Deixando de lado o problema da interpretação dos mecanismos inflacionários subjacente nas duas formulações, curva de Phillips e modelo de realimentação, a hipótese de que a demanda efetiva é função apenas do nível de renda nos parece suficiente mente forte para que um econometrista na boa tradição bayesiana associasse a essa hipótese uma probabilidade praticamente igual a zero. Todavia, para avaliar a proposição feita por Lopes, mencionada na introdução desta nota, admitiremos na terceira seção deste trabalho que o nosso econometrista bayesiano seja um dogmático da probabilidade unitária, isto é, que acredite com probabilidade igual a um que $\theta_x = 0$.

Até este ponto discutimos o modelo de realimentação de Simonsen como apresentado no livro *Inflação: Gradualismo X Tratamento de Choque*. Em trabalho posterior Simonsen (1974) sugere uma relação entre a taxa de crescimento do produto real e a componente de regulagem de demanda como na Figura 1, e que ele descreve do seguinte modo:

"Até certo nível de j_t, a taxa de crescimento do produto real deve ser tanto maior quanto mais intensa for essa componente de regulagem da demanda. Mais ainda, devido ao crescimento físico da oferta de fatores e ao progresso tecnológico, deve existir uma taxa de crescimento positiva para o produto real, alcançável sem pressões inflacionárias de demanda, isto é, com
$g_t = 0$. É o que denominaremos taxa normal de crescimento do produto real $[Dy_t^*]$. Além de certo ponto, um aumento de g_t deverá provocar uma diminuição de $[Dy_t]$. Com efeito, em primeiro lugar, deve-se notar que há um limite físico às possibilidades de crescimento do produto real num período, embora não haja qualquer teto à taxa de inflação; em segundo lugar, uma taxa inflacionária acima de certo nível só deve perturbar a expansão do produto". [Simonsen (1974), p. 123].

Algebricamente a relação da Figura 1 pode ser representada pela seguinte equação:

$$(2.6) \quad Dy_t = F\left(g_t\right).$$

O problema que surge com essa equação quando se procura combiná-la com a equação (2.1) para se obter uma equação que possa ser estimada é que o formato da função $F\left(\right)$ não é conhecida. A seguir, baseando-se em expansões de Taylor, examinaremos algumas formas aproximadas.

A expansão de Taylor, em torno do ponto $g_t = 0$, da equação (2.6) é dada por:

$$(2.7) \quad Dy_t = F\left(0\right) + F'\left(0\right) g_t + \frac{F''(0)}{2} g_t^2$$

Na verdade a equação (2.6) já aparece em Simonsen (1970) [equação (4) da página 171]. Contudo, uma formulação mais precisa dessa equação só aparece no trabalho de 1974. O modelo de realimentação de Simonsen deve ser visto como um modelo que determina simultaneamente p_t e Dy_t, bem como outras variáveis que por ora não nos interessam. Entretanto, é bom salientar, que, o mercado de trabalho, fundamental na curva de Phillips, está ausente nas equações de Simonsen. Indiretamente reajustes salariais entram através do coeficiente de realimentação. É de se presumir que a taxa de variação dos salários no modelo de realimentação de Simonsen é dada pelo mecanismo institucional introduzido no Governo Castelo Branco, cujo objetivo é a recomposição do salário real médio acrescido dos ganhos de produtividade.
Figura 1

RELAÇÃO ENTRE A COMPONENTE DE REGULAGEM DE DEMANDA \((g_t)\) E A TAXA DE CRESCIMENTO DO PRODUTO REAL \((D_y_t)\) SEGUNDO SIMONSEN (1974).
Observando-se que $F(0) = D_y^*$ a componente de regulagem de demanda q_t em (2.7) pode ser escrita como:

$$g_t = \frac{1}{F'(0) + \frac{F''(0)}{2} g_t} (D_y - D_y^*)$$

Substituindo-se o termo de regulagem de demanda da equação (2.1) pelo valor de g_t dado na expressão anterior, obtem-se:

$$\varphi_t = \alpha + \beta \varphi_t + \frac{1}{F'(0) + \frac{F''(0)}{2} q_t} (D_y - D_y^*)$$

É fácil concluir a partir da Figura 1 que $F'(0) > 0$ e $F''(0) < 0$, sendo que o valor de $F'(0)$ é bastante pequeno. O modelo de realimentação - LL corresponde agora ao modelo de realimentação de Simonsen na versão de 1974 quando se faz $F''(0) = 0$. Obviamente, esta não é a hipótese implícita na Figura 1. Ademais, a expansão de Taylor (2.7) não resolve o problema de estimativa da equação (2.9) pois o coeficiente de $(D_y - D_y^*)$ depende de g_t e, portanto, varia com o tempo.

Alternativamente, a função (2.6) numa aproximação de segunda ordem pode ser escrita como:

$$D_y = F(0) + \frac{F'(0) + F'(q_t)}{2} q_t$$

6 Lopes (1979, p. 29) interpreta $F'(0)$ como sendo igual a zero. Sem dúvida alguma, é difícil extrapolar a partir da Figura 1 qual o valor desta derivada. Todavia, Simonsen na citação transcrita (pp.5-6), dá a entender que o valor dessa derivada no ponto $q_t = 0$ é maior que zero. A hipótese de que $F'(0) > 0$ é feita aqui inclusive porque torna plausível a interpretação Lengrubert-Lopes.

7 Daqui por diante, para não causar confusão, denominaremos de modelo de realimentação - LL o modelo de realimentação como interpretado por Lengrubert e Lopes.

Substituindo-se o valor de g_t fornecido por essa expressão na equação (2.1) resulta em:

$$(2.11) \quad p_t = \alpha + \beta p^e_t + \frac{2}{F'(0) + F'(g_t)} (Dy_t - Dy^*_t)$$

Observe que o coeficiente de $(Dy_t - Dy^*_t)$ contém o termo $F'(g_t)$ que além de variar em valor absoluto varia também no que diz respeito ao sinal. Assim, a expansão de Taylor (2.10) também não resolve o problema criado pelo fato da equação (2.1) conter uma variável econômica não observável.

3 - CURVA DE PHILLIPS DE FRIEDMAN X MODELO DE REALIMENTAÇÃO - LL

Em seu Theoretical Framework Friedman sugere a seguinte curva de Phillips:

$$(3.1) \quad p_t = \alpha + \beta p^e_t + (Dy_t - Dy^*_t) + \delta (\log y_t - \log y^*_t)$$

onde α, β, γ e δ são parâmetros, p_t é a taxa de inflação, p^e_t é a taxa de inflação esperada, Dy_t é a taxa de crescimento do produto $(Dy_t = \log y_t/\bar{y}_{t-1})$, Dy^*_t é a taxa de crescimento de produto potencial $(Dy^*_t = \log y^*_t/\bar{y}^*_{t-1})$, y_t é o nível do produto e y^*_t é o nível de produto potencial.

9 Poderia se pensar que colocando-se no eixo vertical a componente de regulação de demanda g_t e no eixo horizontal a taxa de crescimento do produto real Dy_t, uma expansão de Taylor do tipo (2.7) ou (2.10) resolveria o problema. É fácil verificar-se que esse não é o caso.

10 A especificação de Friedman não contém o termo constante α, $\beta = 1$, e é em termos diferenciais, no resto é análoga à equação (3.1). A equação a que nos referimos é a equação (28) contida em Friedman (1970), p. 224.
É fácil verificar que se $\delta = 0$ a equação (3.1) reduz-se ao modelo de realimentação - LL:

$$p_t = \alpha + \beta p_{t-1}^e + \gamma (Dy_t - Dy_{t-1}^*)$$

Quando se tem $\gamma = 0$ na equação (3.1) obtém-se a curva de Phillips tradicional:

$$p_t = \alpha + \beta p_{t-1}^e + \delta (\log y_t - \log y_{t-1}^*)$$

Levando-se em conta que,

$$Dy_t - Dy_{t-1}^* = (\log y_t - \log y_{t-1}^*) - (\log y_{t-1} - \log y_{t-1}^*)$$

a equação (3.1) pode ser escrita da seguinte forma alternativa:

$$p_t = \alpha + \beta p_{t-1}^e + (\gamma + \delta) (\log y_t - \log y_{t-1}^*) - \gamma (\log y_{t-1} - \log y_{t-1}^*)$$

Fazendo-se o hiato $h_t = \log y_{t-1} - \log y_t$, a equação acima transforma-se em:

$$p_t = \alpha + \beta p_{t-1}^e - (\gamma + \delta) h_t + \gamma h_{t-1}$$

A equação (3.5) é um caso particular da equação,

$$p_t = \alpha + \beta p_{t-1}^e + \gamma_1 h_t + \gamma_2 h_{t-1}$$

onde $\gamma_1 = - (\gamma + \delta)$ e $\gamma_2 = \gamma$.

Admita-se que no longo prazo a taxa de inflação realizada seja igual à taxa de inflação esperada ($p_t = p_{t-1}^e$), e que o coeficiente δ seja igual à unidade ($\delta = 1$). Da equação (3.6) resulta que:

$$\gamma_1 h_t + \gamma_2 h_{t-1} + \alpha = 0$$
A equação de diferenças finitas de primeira ordem acima tem a seguinte solução:

\begin{align}
(3.8a) \quad h_t &= -\frac{\alpha}{\gamma_1 + \gamma_2} + c \left(-\frac{\gamma_2}{\gamma_1} \right)^t, \quad \gamma_2 \neq -\gamma_1 \\
(3.8b) \quad h_t &= -\frac{\alpha}{\gamma_1} t + c, \quad \gamma_2 = -\gamma_1
\end{align}

onde \(c \) é uma constante que depende das condições iniciais do modelo.

O valor de \(h_t \), para \(\gamma_2 \neq -\gamma_1 \), converge para

\[-\frac{\alpha}{\gamma_1 + \gamma_2}\]

quando:

\[-\frac{\gamma_2}{\gamma_1} < 1\]

Na curva de Phillips de Friedman,

\[-\frac{\gamma_2}{\gamma_1} = \frac{\gamma}{\gamma + \delta} < 1\]

portanto, \(h_t \) converge para zero pois em sua especificação \(\alpha = 0 \), isto é, a curva de Phillips é vertical no longo prazo e o hiato é igual a zero.

O modelo de realimentação - LL admite que,

\[\gamma_2 = -\gamma_1\]

pois \(\delta = 0 \). Assim, no modelo de realimentação - LL, segundo a equação (3.8b), a taxa de capacidade ociosa varia com o tempo mas independe da taxa de inflação, não havendo, consequentemente, nenhum trade-off no longo prazo entre hiato e taxa de inflação. Portanto, a curva de Phillips associada ao modelo de rea-
limentação é vertical quando o coeficiente de realimentação é unitário. No caso em que \(\alpha = 0 \), o hiato permanece constante ao longo do tempo, mas o modelo não explica qual o nível do hiato. Quando \(\alpha \neq 0 \), o hiato estará variando ao longo do tempo com valores cada vez menores.

4 - CONCLUSÃO

Certamente Friedman não poderia ser considerado como um economista cujos trabalhos pudessem, de alguma maneira, estar associados a conclusões ligadas a um modelo neo-estruturalista pois, segundo Friedman, a curva de Phillips no longo prazo é vertical. O modelo de realimentação-LL sendo um caso particular, como se mostrou na seção precedente, da curva de Phillips de Friedman não implica, também, no longo prazo, em nenhum trade-off entre hiato e inflação.

Do ponto de vista empírico, o teste do modelo de realimentação-LL se torna bastante interessante pois admite hipótese muito forte sobre o comportamento da economia. A equação (3.5) mostra que este teste pode ser feito, testando-se a hipótese nula de que a soma dos coeficientes \(\gamma_1 \) e \(\gamma_2 \) é igual a zero. O teste também pode ser feito através da equação (3.1) testando-se a hipótese nula \(\delta = 0 \). Este, aliás, foi o procedimento adotado por Lemgruber (1974) e que o levou a rejeitar o modelo de realimentação-LL.

A conclusão a que chegamos na seção precedente quanto à independência entre a taxa de inflação e o hiato no longo prazo pode ser obtida de um modo mais direto e menos algébrico interpretando-se o longo prazo como uma situação em que todas as...
taxas esperadas são iguais às taxas observadas. Assim, no longo prazo \(D_y_t = D_y^* \) e \(P_t = P_t^e \). Consequentemente, quando \(a = 0 \) conclui-se da equação (3.1) que \(\log y_t = \log y_t^* \) se \(\beta = 1 \), isto é, a curva de Phillips é vertical no longo prazo. Aliás, este parece ser o enfoque implícito no trabalho de Friedman (1970).

Quando \(\delta = 0 \) a equação (3.1) se torna o modelo de realimentação-LL. Impondo-se a condição \(D_y = D_y^* \) a taxa de inflação de longo prazo, se \(\beta \neq 1 \), será dada por \(a/(1-\beta) \) e independe do nível de hiato.\(^{11}\) Todavia, quando \(\beta = 1 \), \(P_t = P_t^e \) e \(D_y_t = D_y_t^* \) o coeficiente \(a \) que traduz a inflação autônoma, seria igual a zero, resultado que à primeira vista parece um pouco estranho. Contudo, se a inflação autônoma no modelo for constante não faz o mínimo sentido separar este componente da componente de expectativa pois, obviamente, todos os agentes econômicos passariam a incorporar a parcela autônoma de inflação em suas expectativas. Seria então, mais adequado especificar-se a equação (3.1) com o valor de \(a \) igual a zero e impor-se a condição \(P_t^e > \bar{p} \), onde \(\bar{p} \) seria a componente autônoma da inflação. No longo prazo, evidentemente, \(P_t = P_t^e > \bar{p} \).

A distinção feita na segunda seção deste trabalho entre o modelo de realimentação-LL e o modelo de realimentação de Simonsen mostra claramente que este último modelo não foi ainda testado para a economia brasileira.\(^{12}\) O teste do modelo de Simonsen depende basicamente da especificação da equação de demanda.

\(^{11}\)Esta é a conclusão a que chega Lemgruber (1974) admitindo que no longo prazo \(D_y_t = D_y^* \).

\(^{12}\)O teste contido em Simonsen (1970) deixa a desejar pois a proxy por ele usada para a taxa de crescimento da demanda efetiva é possivelmente inadequada, além do que as variáveis que foram deixadas de fora da equação estimada provocam tendenciasidade nas estimativas obtidas.
da efetiva bem como de uma análise cuidadosa da parte estocástica do modelo. Cabe, contudo, antes de proceder a um estudo econômico, com tal finalidade, uma avaliação mais crítica do ponto de vista teórico, pois, por exemplo, no modelo de realimentação de Simonsen um excesso de demanda não provoca inflação. A inflação resulta da diferença entre a taxa de crescimento da demanda efetiva ex-ante e a taxa de crescimento da demanda natural. Assim, é possível existir uma situação em que há excesso de demanda, a taxa de crescimento da demanda ex-ante seja igual à taxa natural, e segundo o modelo de realimentação de Simonsen não existe inflação.

Do ponto de vista econômico é importante que se forme um modelo que de certo modo generalize os modelos de realimentação e da curva de Phillips, e que possibilite o confronto entre as duas especificações. A seguir, em caráter bastante preliminar apresentamos uma sugestão com este objetivo.

Admita-se que a taxa de inflação seja igual à soma da taxa de variação do mark-up, mₜ, e da taxa de variação do salário nominal, ωₜ, isto é:

\[(4.1) \quad P_t = m_t + \omega_t \]

A taxa de variação do salário nominal é dada pela curva de Phillips,

\[(4.2) \quad \omega_t = \beta P_t^e + \delta (u_t - u_t^*) \]

onde \(u_t \) é a taxa de desemprego e \(u_t^* \) é a taxa de desemprego natural. A chamada Lei de Okun,

\[u_t - u_t^* = \theta h_t, \theta > 0 \]
onde h_t é o hiato e θ um parâmetro, positivo, permite que se escreva a equação (4.2) como:

$$w_t = \beta p^e_t + \delta h_t$$

Substituindo-se (4.3) em (4.1) chega-se à seguinte expressão para a taxa de inflação:

$$p_t = m_t + \beta p^e_t + \delta h_t$$

A expressão anterior permite estimar, desde que m_t seja considerado constante (ou se comporte aleatoriamente com uma dada média, que pode ser zero), o *trade-off* entre taxa de inflação e o nível do hiato, bem como testar a hipótese de que o coeficiente δ é ou não unitário. Vale ressaltar que a equação (4.4) contém uma hipótese mantida, não-testada, de que o desvio da taxa de desemprego em relação à taxa natural é ligado através de uma relação estável ao hiato do produto pela chamada Lei de Okun. Obviamente, se esta relação não se aplicar à economia brasileira ou se a relação for instável alguns estudos realizados para o Brasil deixam de ter significado. Este ponto, qual seja o da aplicação ou não da Lei de Okun a economia brasileira, deve merecer um estudo teórico mais detalhado. Cabe salientar que este problema é bastante diferente do problema da inexistência de dados de desemprego ou da utilização de *proxys* para o hiato do produto.

O termo de regulagem de demanda da equação de Simonsen pode ser introduzido na expressão (4.4) através da taxa de variação do *mark-up*. Com efeito, supondo-se que

$$m_t = \gamma (D_{t\rightarrow t} - D^*_t)$$
a equação (4.4) passa a ser escrita como:

\[p_t = \beta p^{e}_t + \delta h_t + \gamma (D_{e_t} - D^*_t) \]

Uma especificação do tipo da equação (2.3) ligaria a variável não observável \(D_{e_t} \) à variáveis observáveis e o modelo poderia, então, ser estimado e efetuar-se também o teste de que o coeficiente do hiato do produto seja igual a zero. Este teste seria importante pois discriminaria entre o modelo de realimentação e o de curva de Phillips.
REFERÊNCIAS

