Publicação:
Estimation of a weights matrix for determining spatial effects

Carregando...
Imagem de Miniatura

Paginação

Primeira página

Última página

Data de publicação

Data da Série

Data do evento

Data

Data de defesa

Data

Edição

Idioma

eng

Cobertura espacial

Belo Horizonte
Brasil

Cobertura temporal

País

BR

organization.page.location.country

Tipo de evento

Grau Acadêmico

Fonte original

ISBN

ISSN

DOI

dARK

item.page.project.ID

item.page.project.productID

Detentor dos direitos autorais

Instituto de Pesquisa Econômica Aplicada (Ipea)

Acesso à informação

Acesso Aberto

Termos de uso

É permitida a reprodução deste texto, desde que obrigatoriamente citada a fonte. Reproduções para fins comerciais são rigorosamente proibidas.

Titulo alternativo

Texto para Discussão (TD) 672: Estimation of a weights matrix for determining spatial effects, Estimação de uma matriz pesos para determinar efeitos espaciais

item.page.organization.alternative

Variações no nome completo

Orientador(a)

Editor(a)

Organizador(a)

Coordenador(a)

item.page.organization.manager

Outras autorias

Palestrante/Mediador(a)/Debatedor(a)

Coodenador do Projeto

Resumo

A existência de efeitos de “transbordamento”, como o impacto do preço de uma unidade residencial no preço de seus vizinhos adjacentes, caracteriza a chamada “dependência espacial”. Uma forma de se levar em conta a dependência espacial é especificar modelos de defasagem espacial nos quais se supõe que uma variável espacialmente defasada explica, pelo menos parcialmente, a variação da variável dependente original. A maioria dos estudos fixa a priori os parâmetros utilizados na construção da matriz de pesos espaciais que serve de operador da defasagem espacial. Em contraste, este trabalho não pressupõe qualquer valor a priori para os parâmetros da matriz de pesos espaciais na estimação de efeitos de transbordamento. Nós adotamos uma abordagem de máxima verossimilhança clássica e um procedimento bayesiano, Sampling–Importance–Resampling (SIR), para estimar os pesos da matriz e a significância da dependência espacial. Utilizamos dados de unidades residenciais da cidade de Belo Horizonte, e comparamos os resultados obtidos com o procedimento desenvolvido com aqueles derivados a partir da fixação a priori dos pesos espaciais. A análise mostra que a função de verossimilhança tem um pico bem definido, e o parâmetro de decaimento estimado é bastante diverso dos valores prefixados usualmente adotados na literatura empírica, como o decaimento “tudo-ou-nada” dentro da distância crítica ou o uso do “inverso da distância”.

Resumo traduzido

Spatial dependence results from the existence of spillover effects such as the impact of the price of one housing unit on the price of its adjacent neighbors. One way to account for spatial dependence is to specify spatial lag models in which a spatially lagged variable is assumed to play a role in explaining the variation of the original dependent variable. Most studies use a priori non-sample information in the construction of the spatial weights matrix which serves as a spatial lag operator. In contrast, this study assumes no a priori value for the spatial weights matrix in the estimation of spillover effects. We adopt a classical maximum likelihood approach and also a Bayesian Sampling-Importance-Resampling (SIR) procedure to estimate the weights matrix and the significance of spatial dependence. We apply the two estimation procedures to data on housing prices in the city of Belo Horizonte, Brazil, and compare the results obtained with these two techniques with the one derived by a priori fixing the weights. The analysis shows that the likelihood function of the weights matrix parameters has a well-defined peak, and the estimated distance-decay parameter is quite different from the standard a priori assumptions such as the “all-or-nothing” decay within the cut-off distance or the “inverse distance” adopted in the empirical literature.

organization.page.description

Sobre o pesquisador

Endereço de Email

ORCID

Lattes

Google Scholar ID

Web of Science ResearcherID

Scopus ID

Informações sobre o projeto

project.page.project.productdescription

Vocabulário Controlado do Ipea

Palavras-chave traduzidas

JEL

Citação

Aviso

Notas

Série / coleção

Versão preliminar

Versão final dessa publicação

Faz parte da série

Publicações relacionadas / semelhantes

organization.page.relation.references

Livros

Publicações

Faz parte da série

Fascículos

Eventos relacionados

Volumes

Projetos de Pesquisa

Unidades Organizacionais

REPOSITÓRIO DO CONHECIMENTO DO IPEA
Redes sociais