
As publicações do Ipea estão disponíveis para download gratuito nos formatos PDF (todas)
e EPUB (livros e periódicos). Acesse: http://www.ipea.gov.br/portal/publicacoes

As opiniões emitidas nesta publicação são de exclusiva e inteira responsabilidade dos autores, não exprimindo,
necessariamente, o ponto de vista do Instituto de Pesquisa Econômica Aplicada ou do Ministério do
Planejamento e Orçamento.

É permitida a reprodução deste texto e dos dados nele contidos, desde que citada a fonte. Reproduções para fins
comerciais são proibidas.

© Instituto de Pesquisa Econômica Aplicada – ipea 2023

Título do capítulo
CHAPTER 5
GTFS DATA MANIPULATION AND VISUALIZATION

Autor(es)
Rafael H. M. Pereira
Daniel Herszenhut

DOI DOI: http://dx.doi.org/10.38116/9786556350653chap5

Título do livro Introduction to Urban Accessibility: a practical guide with R

Organizadores(as) Rafael H. M. Pereira
Daniel Herszenhut

Volume 1

Série -

Cidade Rio de Janeiro

Editora Instituto de Pesquisa Econômica Aplicada (Ipea)

Ano 2023

Edição 1a

ISBN 9786556350653

DOI DOI: http://dx.doi.org/10.38116/9786556350653

CHAPTER 5

5 GTFS DATA MANIPULATION AND VISUALIZATION

GTFS data is frequently used in various types of analyses that involve a few
common elements. The AOP team has developed the {gtfstools} R package,
which provides several functions that help tackling repetitive tasks and operations
and facilitate feed manipulation and exploration.

In this chapter, we’ll go through some of the most frequently used package
features. To do this, we will use a sample of the SPTrans feed presented in the
previous chapter, and which is included in the package installation.

5.1 Reading and manipulating GTFS files

Reading GTFS files with {gtfstools} is done with the read_gtfs() function,
which receives a string with the file path. The package represents a feed as a
list of data.tables, a high-performance version of data.frames. Throughout
this chapter, we will refer to this list of tables as a GTFS object. By default, the
function reads all .txt tables in the feed:

loads the package
library(gtfstools)

points to path of the sample gtfs data installed in {gtfstools}
path <- system.file("extdata/spo_gtfs.zip", package = "gtfstools")

reads the gtfs
gtfs <- read_gtfs(path)

checks the tables inside the gtfs object
names(gtfs)

[1] "agency" "calendar" "frequencies" "routes" "shapes"
[6] "stop_times" "stops" "trips"

We can see that each data.table within the GTFS object is named
according to the table it represents, without the .txt extension. This
configuration allows us to select and manipulate each table individually.
The code below, for example, lists the first 6 rows of the trips table:

https://github.com/ipeaGIT/gtfstools

Introduction to Urban Accessibility: a practical guide with R58 |

head(gtfs$trips)

 route_id service_id trip_id trip_headsign direction_id shape_id
1: CPTM L07 USD CPTM L07-0 JUNDIAI 0 17846
2: CPTM L07 USD CPTM L07-1 LUZ 1 17847
3: CPTM L08 USD CPTM L08-0 AMADOR BUENO 0 17848
4: CPTM L08 USD CPTM L08-1 JULIO PRESTES 1 17849
5: CPTM L09 USD CPTM L09-0 GRAJAU 0 17850
6: CPTM L09 USD CPTM L09-1 OSASCO 1 17851

Tables within a GTFS object can be easily manipulated using the {dplyr}
or {data.table} packages, for example. In this book, we opted to use the
{data.table} syntax. This package offers several useful features, primarily for
manipulating tables with a large number of records, such as updating columns
by reference, very fast row subsets and efficient data aggregation.15 For example,
we can use the code below to add 100 seconds to all the headways listed in the
frequencies table and later reverse this change:

saves original headways
original_headway <- gtfs$frequencies$headway_secs
head(gtfs$frequencies, 3)

 trip_id start_time end_time headway_secs
1: CPTM L07-0 04:00:00 04:59:00 720
2: CPTM L07-0 05:00:00 05:59:00 360
3: CPTM L07-0 06:00:00 06:59:00 360

updates the headways
gtfs$frequencies[, headway_secs := headway_secs + 100]
head(gtfs$frequencies, 3)

 trip_id start_time end_time headway_secs
1: CPTM L07-0 04:00:00 04:59:00 820
2: CPTM L07-0 05:00:00 05:59:00 460
3: CPTM L07-0 06:00:00 06:59:00 460

restores the original headway
gtfs$frequencies[, headway_secs := original_headway]
head(gtfs$frequencies, 3)

 trip_id start_time end_time headway_secs
1: CPTM L07-0 04:00:00 04:59:00 720
2: CPTM L07-0 05:00:00 05:59:00 360
3: CPTM L07-0 06:00:00 06:59:00 360

15. More details on {data.table} usage and syntax are available at: https://rdatatable.gitlab.io/data.table/index.html.

https://rdatatable.gitlab.io/data.table/index.html

GTFS Data Manipulation and Visualization | 59

After editing a GTFS object in R, we often want to use the processed GTFS
to perform different analyses. In order to do this, we frequently need the GTFS file
in .zip format again, and not as a list of tables in an R session. To transform GTFS
objects that exist in an R session into GTFS files saved to disk, {gtfstools}
includes the write_gtfs() function. To use this function, we only need to pass
the object that should be written to disk and the file path where it should be
written to:

points to the path where the GTFS should be written to
export_path <- tempfile("new_gtfs", fileext = ".zip")

writes the GTFS to the path
write_gtfs(gtfs, path = export_path)

lists files within the feed
zip::zip_list(export_path)[, c("filename", "compressed_size",
"timestamp")]

 filename compressed_size timestamp
1 agency.txt 112 2023-06-16 15:38:14
2 calendar.txt 129 2023-06-16 15:38:14
3 frequencies.txt 2381 2023-06-16 15:38:14
4 routes.txt 659 2023-06-16 15:38:14
5 shapes.txt 160470 2023-06-16 15:38:14
6 stop_times.txt 7907 2023-06-16 15:38:14
7 stops.txt 18797 2023-06-16 15:38:14
8 trips.txt 717 2023-06-16 15:38:14

5.2 Calculating trip speed

GTFS files are often used in public transport routing applications and to inform
the timetable of different routes in a given region to potential passengers. Feeds
must, therefore, accurately describe the schedule and the operational speed of
public transport trips.

To calculate the average speed of the trips described in a feed, {gtfstools}
package includes the function get_trip_speed(). By default, the function
returns the speed (in km/h) of all trips included in the feed, but one can choose
to calculate the speed of selected trips with the trip_id parameter:

calculates the speeds of all trips
speeds <- get_trip_speed(gtfs)

head(speeds)

Introduction to Urban Accessibility: a practical guide with R60 |

 trip_id origin_file speed
1: 2002-10-0 shapes 8.952511
2: 2105-10-0 shapes 10.253365
3: 2105-10-1 shapes 9.795292
4: 2161-10-0 shapes 11.182534
5: 2161-10-1 shapes 11.784458
6: 4491-10-0 shapes 13.203560

nrow(speeds)

[1] 36

calculates the speeds of two specific trips
speeds <- get_trip_speed(gtfs, trip_id = c("CPTM L07-0",
"2002-10-0"))

speeds

 trip_id origin_file speed
1: 2002-10-0 shapes 8.952511
2: CPTM L07-0 shapes 26.787768

To calculate the speed of a trip, we need to know its length and how long it
takes to travel from its first to its last stop. Behind the scenes, get_trip_speed()
uses two other functions from {gtfstools} toolset: get_trip_length() and
get_trip_duration(). The usage of both is very similar to what has been shown
before, returning the length/duration of all trips by default or of a few selected
trips if desired. Below, we show their default behavior:

calculates the length of all trips
lengths <- get_trip_length(gtfs, file = "shapes")

head(lengths)

 trip_id length origin_file
1: CPTM L07-0 60.71894 shapes
2: CPTM L07-1 60.71894 shapes
3: CPTM L08-0 41.79037 shapes
4: CPTM L08-1 41.79037 shapes
5: CPTM L09-0 31.88906 shapes
6: CPTM L09-1 31.88906 shapes

GTFS Data Manipulation and Visualization | 61

calculates the duration of all trips
durations <- get_trip_duration(gtfs)

head(durations)

 trip_id duration
1: 2002-10-0 48
2: 2105-10-0 108
3: 2105-10-1 111
4: 2161-10-0 94
5: 2161-10-1 93

6: 4491-10-0 69

Just as get_trip_speed() returns speeds in km/h by default,
get_trip_length() returns lengths in km and get_trip_duration() returns
the duration in minutes. These units can be adjusted with the unit parameter,
present in all three functions.

5.3 Combining and filtering feeds

The tasks of processing and manipulating GTFS files are often performed manually,
which may increase the chances of leaving minor inconsistencies or errors in the
data. A common issue in some GTFS feeds is the presence of duplicate records
in the same table. SPTrans’ feed, for example, contains duplicate records both in
agency.txt and in calendar.txt:

gtfs$agency

 agency_id agency_name agency_url
1: 1 SPTRANS http://www.sptrans.com.br/?versao=011019
2: 1 SPTRANS http://www.sptrans.com.br/?versao=011019
 agency_timezone agency_lang
1: America/Sao_Paulo pt
2: America/Sao_Paulo pt

gtfs$calendar

 service_id monday tuesday wednesday thursday friday saturday sunday
 1: USD 1 1 1 1 1 1 1
 2: U__ 1 1 1 1 1 0 0
 3: US_ 1 1 1 1 1 1 0
 4: _SD 0 0 0 0 0 1 1
 5: __D 0 0 0 0 0 0 1
 6: _S_ 0 0 0 0 0 1 0

Introduction to Urban Accessibility: a practical guide with R62 |

 7: USD 1 1 1 1 1 1 1
 8: U__ 1 1 1 1 1 0 0
 9: US_ 1 1 1 1 1 1 0
10: _SD 0 0 0 0 0 1 1
11: __D 0 0 0 0 0 0 1
12: _S_ 0 0 0 0 0 1 0

 start_date end_date
 1: 2008-01-01 2020-05-01
 2: 2008-01-01 2020-05-01
 3: 2008-01-01 2020-05-01
 4: 2008-01-01 2020-05-01
 5: 2008-01-01 2020-05-01
 6: 2008-01-01 2020-05-01
 7: 2008-01-01 2020-05-01
 8: 2008-01-01 2020-05-01
 9: 2008-01-01 2020-05-01
10: 2008-01-01 2020-05-01
11: 2008-01-01 2020-05-01

12: 2008-01-01 2020-05-01

{gtfstools} includes the remove_duplicates() function to keep only
unique entries in all tables of the feed. This function takes a GTFS object as input
and returns the same object without duplicates:

no_dups_gtfs <- remove_duplicates(gtfs)

no_dups_gtfs$agency

 agency_id agency_name agency_url
1: 1 SPTRANS http://www.sptrans.com.br/?versao=011019
 agency_timezone agency_lang
1: America/Sao_Paulo pt

no_dups_gtfs$calendar

 service_id monday tuesday wednesday thursday friday saturday sunday
1: USD 1 1 1 1 1 1 1
2: U__ 1 1 1 1 1 0 0
3: US_ 1 1 1 1 1 1 0
4: _SD 0 0 0 0 0 1 1
5: __D 0 0 0 0 0 0 1
6: _S_ 0 0 0 0 0 1 0

GTFS Data Manipulation and Visualization | 63

 start_date end_date
1: 2008-01-01 2020-05-01
2: 2008-01-01 2020-05-01
3: 2008-01-01 2020-05-01
4: 2008-01-01 2020-05-01
5: 2008-01-01 2020-05-01
6: 2008-01-01 2020-05-01

We often have to deal with multiple feeds describing the same study area.
For example, when the bus and the rail systems of a single city are described in
separate GTFS files. In such cases, we may want to merge both files into a single
feed to reduce the data processing effort. To help us with that, {gtfstools}
includes the merge_gtfs() function. The example below shows the output of
merging SPtrans’ feed (without duplicate entries) with EPTC’s feed:

reads Porto Alegre’s GTFS
poa_path <- system.file("extdata/poa_gtfs.zip", package =
"gtfstools")
poa_gtfs <- read_gtfs(poa_path)

poa_gtfs$agency

 agency_id
1: EPTC
 agency_name
1: Empresa Publica de Transportes e Circulação
 agency_url agency_timezone
1: http://www.eptc.com.br America/Sao_Paulo
 agency_lang agency_phone
1: pt 156
 agency_fare_url
1: http://www2.portoalegre.rs.gov.br/eptc/default.php?p_secao=155

no_dups_gtfs$agency

 agency_id agency_name agency_url
1: 1 SPTRANS http://www.sptrans.com.br/?versao=011019
 agency_timezone agency_lang
1: America/Sao_Paulo pt

combines Porto Alegre’s and São Paulo’s GTFS objects
combined_gtfs <- merge_gtfs(no_dups_gtfs, poa_gtfs)

check results
combined_gtfs$agency

Introduction to Urban Accessibility: a practical guide with R64 |

 agency_id agency_name
1: 1 SPTRANS
2: EPTC Empresa Publica de Transportes e Circulação
 agency_url agency_timezone agency_lang
1: http://www.sptrans.com.br/?versao=011019 America/Sao_Paulo pt
2: http://www.eptc.com.br America/Sao_Paulo pt
 agency_phone agency_fare_url
1:
2: 156 http://www2.portoalegre.rs.gov.br/eptc/default.php?p_secao=155

We can see that the tables of both feeds are combined into a single one.
This is the case when two (or more) GTFS objects contain the same table (agency,
in the example). When a particular table is present in only one of the feeds, the
function copies this table to the output. That’s the case of the frequencies table,
in our example, which exists only in SPTrans’ feed:

names(poa_gtfs)

[1] "agency" "calendar" "routes" "shapes" "stop_times"
[6] "stops" "trips"

names(no_dups_gtfs)

[1] "agency" "calendar" "frequencies" "routes" "shapes"
[6] "stop_times" "stops" "trips"

names(combined_gtfs)

[1] "agency" "calendar" "frequencies" "routes" "shapes"
[6] "stop_times" "stops" "trips”

identical(no_dups_gtfs$frequencies, combined_gtfs$frequencies)

[1] TRUE

Filtering feeds to keep only a few entries within each table is another operation
that frequently comes up when dealing with GTFS data. Feeds are often used to
describe large-scale public transport networks, which may result in complex and
slow data manipulation, analysis and sharing. Thus, planners and researchers
often work with feeds’ subsets. If we want to measure the performance of a
transport network during the morning peak, for example, we can filter our
GTFS data to keep only the observations related to trips that run within this period.

GTFS Data Manipulation and Visualization | 65

{gtfstools} includes lots of functions to filter GTFS data. They are:

•	 filter_by_agency_id();
•	 filter_by_route_id();
•	 filter_by_service_id();
•	 filter_by_shape_id();
•	 filter_by_stop_id();
•	 filter_by_trip_id();
•	 filter_by_route_type();
•	 filter_by_weekday();
•	 filter_by_time_of_day(); and
•	 filter_by_sf().

5.3.1 Filtering by identifiers

The seven first functions from the above list work very similarly. They take as
input a vector of identifiers and return a GTFS object whose table entries are
related to the specified ids. The example below demonstrates this functionality
with filter_by_trip_id():

checks pre-filter object size
utils::object.size(gtfs)

864568 bytes

head(gtfs$trips[, .(trip_id, trip_headsign, shape_id)])

 trip_id trip_headsign shape_id
1: CPTM L07-0 JUNDIAI 17846
2: CPTM L07-1 LUZ 17847
3: CPTM L08-0 AMADOR BUENO 17848
4: CPTM L08-1 JULIO PRESTES 17849
5: CPTM L09-0 GRAJAU 17850
6: CPTM L09-1 OSASCO 17851

keeps entries related to the two specified ids
filtered_gtfs <- filter_by_trip_id(
 gtfs,
 trip_id = c("CPTM L07-0", "CPTM L07-1")
)

checks post-filter object size
utils::object.size(filtered_gtfs)

Introduction to Urban Accessibility: a practical guide with R66 |

71592 bytes

head(filtered_gtfs$trips[, .(trip_id, trip_headsign, shape_id)])

 trip_id trip_headsign shape_id
1: CPTM L07-0 JUNDIAI 17846
2: CPTM L07-1 LUZ 17847

unique(filtered_gtfs$shapes$shape_id)

[1] "17846" "17847"

We can see from the code snippet above that the function not only filters
trips, but all other tables containing a column that relates to trip_id in any way.
The shapes of trips CPTM L07-0 and CPTM L07-1, for example, are respectively
described by shape_ids 17846 and 17847. Therefore, these are the only shape
identifiers kept in the filtered GTFS.

The function also supports the opposite behavior: instead of keeping the
entries related to the specified identifiers, we can drop them. To do this, we need
to set the keep argument to FALSE:

removes entries related to two trips from the feed
filtered_gtfs <- filter_by_trip_id(
 gtfs,
 trip_id = c("CPTM L07-0", "CPTM L07-1"),
 keep = FALSE
)

head(filtered_gtfs$trips[, .(trip_id, trip_headsign, shape_id)])

 trip_id trip_headsign shape_id
1: CPTM L08-0 AMADOR BUENO 17848
2: CPTM L08-1 JULIO PRESTES 17849
3: CPTM L09-0 GRAJAU 17850
4: CPTM L09-1 OSASCO 17851
5: CPTM L10-0 RIO GRANDE DA SERRA 17852
6: CPTM L10-1 BRÁS 17853

head(unique(filtered_gtfs$shapes$shape_id))

[1] "17848" "17849" "17850" "17851" "17852" "17853"

GTFS Data Manipulation and Visualization | 67

We can see that the specified trips, as well as their shapes, are not present
in the filtered GTFS anymore. The same logic, demonstrated here with
filter_by_trip_id(), applies to the functions that filter GTFS objects by
agency_id, route_id, service_id, shape_id, stop_id and route_type.

5.3.2 Filtering by day of the week and time of the day

Another common operation when dealing with GTFS data is subsetting
feeds to keep services that only happen during certain times of the day or days
of the week. To do this, the package includes the filter_by_weekday() and
filter_by_time_of_day() functions.

filter_by_weekday() takes as input the days of the week whose services
that operate on them should be kept (or dropped). The function also includes
a combine parameter, which defines how multi-days filters should work. When
this argument receives the value "and", only services that operate on every single
specified day are kept. When it receives the value "or", services that operate on at
least one of the days are kept:

keeps services that operate on both saturday AND sunday
filtered_gtfs <- filter_by_weekday(
 no_dups_gtfs,
 weekday = c("saturday", "sunday"),
 combine = "and"
)

filtered_gtfs$calendar[, c("service_id", "sunday", "saturday")]

 service_id sunday saturday
1: USD 1 1
2: _SD 1 1

keeps services that operate EITHER on saturday OR on sunday
filtered_gtfs <- filter_by_weekday(
 no_dups_gtfs,
 weekday = c("sunday", "saturday"),
 combine = "or"
)

filtered_gtfs$calendar[, c("service_id", "sunday", "saturday")]

 service_id sunday saturday
1: USD 1 1
2: US_ 0 1
3: _SD 1 1
4: __D 1 0
5: _S_ 0 1

Introduction to Urban Accessibility: a practical guide with R68 |

filter_by_time_of_day(), on the other hand, takes the beginning and
the end of a time window and keeps (or drops) the entries related to the trips
that run within this window. The behavior of this function depends on whether
a frequencies table is included in the feed or not: the stop_times timetable of
trips listed in frequencies must not be filtered, because, as previously mentioned,
it works as a reference that describes the time between consecutive stops, and the
departure and arrival times listed there should not be considered rigorously. If
a trip is not listed in frequencies, however, its stop_times entries are filtered
according to the specified time window. Let’s see how the function works with
some examples:

keeps trips that run within the 5am to 6am window
filtered_gtfs <- filter_by_time_of_day(gtfs, from = "05:00:00",
to = "06:00:00")

head(filtered_gtfs$frequencies)

 trip_id start_time end_time headway_secs
1: CPTM L07-0 05:00:00 05:59:00 360
2: CPTM L07-1 05:00:00 05:59:00 360
3: CPTM L08-0 05:00:00 05:59:00 480
4: CPTM L08-1 05:00:00 05:59:00 480
5: CPTM L09-0 05:00:00 05:59:00 480
6: CPTM L09-1 05:00:00 05:59:00 480

head(filtered_gtfs$stop_times[, c("trip_id", "departure_time",
"arrival_time")])

 trip_id departure_time arrival_time
1: CPTM L07-0 04:00:00 04:00:00
2: CPTM L07-0 04:08:00 04:08:00
3: CPTM L07-0 04:16:00 04:16:00
4: CPTM L07-0 04:24:00 04:24:00
5: CPTM L07-0 04:32:00 04:32:00
6: CPTM L07-0 04:40:00 04:40:00

save the frequencies table and remove it from the original gtfs
frequencies <- gtfs$frequencies
gtfs$frequencies <- NULL

filtered_gtfs <- filter_by_time_of_day(gtfs, from = "05:00:00",
to = "06:00:00")

GTFS Data Manipulation and Visualization | 69

head(filtered_gtfs$stop_times[, c("trip_id", "departure_time",
"arrival_time")])

 trip_id departure_time arrival_time
1: CPTM L07-0 05:04:00 05:04:00
2: CPTM L07-0 05:12:00 05:12:00
3: CPTM L07-0 05:20:00 05:20:00
4: CPTM L07-0 05:28:00 05:28:00
5: CPTM L07-0 05:36:00 05:36:00
6: CPTM L07-0 05:44:00 05:44:00

Filtering the stop_times table can work in two different ways. One is to
keep trips that cross the specified time window intact. The other is to keep only
the timetable entries that take place inside this window (default behavior). This
behavior is controlled by the full_trips parameter, as shown below (please pay
attention to the times and stops present in each example):

keeps any trips that cross the 5am to 6am window intact
filtered_gtfs <- filter_by_time_of_day(
 gtfs,
 from = "05:00:00",
 to = "06:00:00",
 full_trips = TRUE
)

head(
 filtered_gtfs$stop_times[
 ,
 c("trip_id", "departure_time", "arrival_time", "stop_sequence")
]
)

 trip_id departure_time arrival_time stop_sequence
1: CPTM L07-0 04:00:00 04:00:00 1
2: CPTM L07-0 04:08:00 04:08:00 2
3: CPTM L07-0 04:16:00 04:16:00 3
4: CPTM L07-0 04:24:00 04:24:00 4
5: CPTM L07-0 04:32:00 04:32:00 5
6: CPTM L07-0 04:40:00 04:40:00 6

keeps only the timetable entries that happen inside the 5am
to 6am window
filtered_gtfs <- filter_by_time_of_day(

Introduction to Urban Accessibility: a practical guide with R70 |

 gtfs,
 from = "05:00:00",
 to = "06:00:00",
 full_trips = FALSE
)

head(
 filtered_gtfs $stop_times[
 ,
 c("trip_id", "departure_time", "arrival_time", "stop_sequence")
]
)

 trip_id departure_time arrival_time stop_sequence
1: CPTM L07-0 05:04:00 05:04:00 9
2: CPTM L07-0 05:12:00 05:12:00 10
3: CPTM L07-0 05:20:00 05:20:00 11
4: CPTM L07-0 05:28:00 05:28:00 12
5: CPTM L07-0 05:36:00 05:36:00 13
6: CPTM L07-0 05:44:00 05:44:00 14

5.3.3 Filtering using a spatial extent

Finally, {gtfstools} also includes a function that allows one to filter a GTFS
object using a spatial polygon. filter_by_sf() takes an sf/sfc object (spatial
representation created by the {sf} package), or its bounding box, and keeps
the entries related to trips selected by their position in relation to that spatial
polygon. Although this might seem complicated, this filtering process is fairly
easy to grasp once we illustrate it with an example. To demonstrate this function,
we are going to filter SPTrans’ feed using the bounding box of shape 68962. With
the code snippet below we show the spatial distribution of unfiltered data along
with the bounding box in red:

library(ggplot2)

creates a polygon with the bounding box of shape 68962
shape_68962 <- convert_shapes_to_sf(gtfs, shape_id = "68962")
bbox <- sf::st_bbox(shape_68962)
bbox_geometry <- sf::st_as_sfc(bbox)

creates a geometry with all the shapes described in the gtfs
all_shapes <- convert_shapes_to_sf(gtfs)

https://r-spatial.github.io/sf/

GTFS Data Manipulation and Visualization | 71

ggplot() +
 geom_sf(data = all_shapes) +
 geom_sf(data = bbox_geometry, fill = NA, color = "red") +
 theme_minimal()

FIGURE 5
Shapes spatial distribution overlayed by the bounding box of shape 68962

Source: Figure generated by the code snippet above.

Please note that we have used the convert_shapes_to_sf() function, also
included in {gtfstools}, to convert the shapes described in the feed into a sf
spatial object. By default, filter_by_sf() keeps all entries related to trips that
intersect with the specified polygon:

filtered_gtfs <- filter_by_sf(gtfs, bbox)
filtered_shapes <- convert_shapes_to_sf(filtered_gtfs)

ggplot() +
 geom_sf(data = filtered_shapes) +
 geom_sf(data = bbox_geometry, fill = NA, color = "red") +
 theme_minimal()

Introduction to Urban Accessibility: a practical guide with R72 |

FIGURE 6
Spatial distribution of shapes that intersect with the bounding box of shape 68962

Source: Figure generated by the code snippet above.

We can, however, specify different spatial operations to filter the feed. The
code below shows how we can keep the entries related to trips that are contained
by the specified polygon:

filtered_gtfs <- filter_by_sf(gtfs, bbox, spatial_operation =
sf::st_contains)
filtered_shapes <- convert_shapes_to_sf(filtered_gtfs)

ggplot() +
 geom_sf(data = filtered_shapes) +
 geom_sf(data = bbox_geometry, fill = NA, color = "red") +
 theme_minimal()

GTFS Data Manipulation and Visualization | 73

FIGURE 7
Spatial distribution of shapes contained by the bounding box of shape 68962

Source: Figure generated by the code snippet above.

5.4 Validating GTFS data

Transport planners and researchers often want to assess the quality of the GTFS
data they are producing or using in their analyses. Are feeds structured following
the best practices adopted by the larger GTFS community? Are tables and columns
adequately formatted? Is the information described by the feed reasonable (trip
speeds, stop locations etc.)? These are some of the questions that may arise when
dealing with GTFS data.

To answer these and other questions, {gtfstools} includes the
validate_gtfs() function. This function works as a wrapper to MobilityData’s
Canonical GTFS Validator, which requires Java version 11 or higher to run.16

16. For more information on how to check the installed version of Java in your computer and on how to install the
required version, please check chapter 3.

https://github.com/MobilityData/GTFS_Schedule_Best-Practices
https://github.com/MobilityData/gtfs-validator

Introduction to Urban Accessibility: a practical guide with R74 |

Using validate_gtfs() is very simple. First, we need to download the
validator. To do this, we use the download_validator() function, included in
the package, which receives the path to the directory where the validator should
be saved to and the version of the validator that should be downloaded (defaults
to the latest available). The function returns the path to the downloaded validator:

tmpdir <- tempdir()

validator_path <- download_validator(tmpdir)
validator_path

[1] "/tmp/Rtmpf3LrBZ/gtfs-validator-v4.0.0.jar"

The second (and final) step consists in actually validating the GTFS data
with validate_gtfs(). This function supports GTFS data in different formats:
i) as a GTFS object in an R session; ii) as a path to a local GTFS file in .zip
format; iii) as an URL pointing to a feed; or iv) as a directory containing unzipped
GTFS tables. The function also takes a path to a directory where the validation
result should be saved to and the path to the validator that should be used in the
process. In the example below, we validate SPTrans’ feed from its path:

output_dir <- tempfile("gtfs_validation")

validate_gtfs(
 path,
 output_path = output_dir,
 validator_path = validator_path
)

list.files(output_dir)

[1] "report.html" "report.json" "system_errors.json"
[4] "validation_stderr.txt"

We can see that the validation process generates a few output files:

•	 report.html, shown in figure 8, which summarizes the validation
result in a nicely formatted HTML page (only available with validator
version 3.1.0 or higher);

•	 report.json, which summarizes the same information, but in JSON
format, which can be used to programatically parse and process
the results;

GTFS Data Manipulation and Visualization | 75

•	 system_errors.json, which summarizes eventual system errors that
may have happened during the validation process and may compromise
the results; and

•	 validation_stderr.txt, which lists informative messages sent by the
validator tool, including a list of the tests conducted, eventual error
messages etc.17

FIGURE 8
Validation report example

Authors’ elaboration.
Obs.: Figure whose layout and texts could not be formatted due to the technical characteristics of the original files (Publiser’s note).

5.5 {gtfstools} workflow example: spatial visualization of headways

We have shown in previous sections that {gtfstools} offers a large toolset to
process and analyze GTFS files. The package, however, also includes many other
functions that could not be shown in this book due to space constraints.18

17. Informative messages may also be listed in the validation_stdout.txt file. Whether messages are listed
in this file or in validation_stderr.txt depends on the validator version.
18. The complete list of functions available in {gtfstools} can be checked at: https://ipeagit.github.io/gtfstools/
reference/index.html.

https://ipeagit.github.io/gtfstools/reference/index.html
https://ipeagit.github.io/gtfstools/reference/index.html

Introduction to Urban Accessibility: a practical guide with R76 |

In this final section of the chapter, we illustrate how to use the package to
make more complex analyses. To do this, we present a workflow that combines
various functions of {gtfstools} together to answer the following question: how
are the times between vehicles operating the same route (the headways) spatially
distributed in SPTrans’ GTFS?

First, we need to define the scope of our analysis. In this example, we are
only going to consider the services operating during the morning peak, between
7 am and 9 am, on a typical tuesday. Thus, we need to filter our feed:

gtfs <- read_gtfs(path)

filters the GTFS
filtered_gtfs <- gtfs |>
 remove_duplicates() |>
 filter_by_weekday("tuesday") |>
 filter_by_time_of_day(from = "07:00:00", to = "09:00:00")

checking the result
filtered_gtfs$frequencies[trip_id == "2105-10-0"]

 trip_id start_time end_time headway_secs
1: 2105-10-0 07:00:00 07:59:00 900
2: 2105-10-0 08:00:00 08:59:00 1200

filtered_gtfs$calendar

 service_id monday tuesday wednesday thursday friday saturday sunday
1: USD 1 1 1 1 1 1 1
2: U__ 1 1 1 1 1 0 0
 start_date end_date
1: 2008-01-01 2020-05-01
2: 2008-01-01 2020-05-01

Next, we need to calculate the headways within this time interval. This
information can be found at the frequencies table, though there is a factor we
have to pay attention to: each trip is associated to more than one headway, as
shown above (one entry for the 7 am to 7:59 am interval and another for the 8 am
to 8:59 am interval). To solve this, we are going to calculate the average headway
from 7 am to 9 am.

The first few frequencies rows in SPTrans’ feed seem to suggest that the
headways are always associated to one-hour intervals, but this is neither a rule
set in the official specification nor necessarily a practice adopted by other feed

GTFS Data Manipulation and Visualization | 77

producers. Thus, we have to calculate the average headways weighted by the time
duration of each headway. To do this, we need to multiply each headway by the
size of the time interval during which it is valid, sum these multiplication results
for each trip, and then divide this amount by the total time interval (two hours, in
our case). To calculate the time intervals within which the headways are valid, we
first use the convert_time_to_seconds() function to calculate the start and end
time of the time interval in seconds and then subtract the latter by the former:

filtered_gtfs <- convert_time_to_seconds(filtered_gtfs)

check how the results look like for a particular trip id
filtered_gtfs$frequencies[trip_id == "2105-10-0"]

 trip_id start_time end_time headway_secs start_time_secs end_time_secs
1: 2105-10-0 07:00:00 07:59:00 900 25200 28740
2: 2105-10-0 08:00:00 08:59:00 1200 28800 32340

filtered_gtfs$frequencies[, time_interval := end_time_secs -
start_time_secs]

Then we calculate the average headway:

average_headway <- filtered_gtfs$frequencies[,
 .(average_headway = weighted.mean(x = headway_secs,
 w = time_interval)),
 by = trip_id
]

average_headway[trip_id == "2105-10-0"]

 trip_id average_headway
1: 2105-10-0 1050

head(average_headway)

 trip_id average_headway
1: CPTM L07-0 360
2: CPTM L07-1 360
3: CPTM L08-0 300
4: CPTM L08-1 300
5: CPTM L09-0 240
6: CPTM L09-1 240

Introduction to Urban Accessibility: a practical guide with R78 |

Now we need to generate each trip geometry and join this data to the
average headways. To do this, we will use the get_trip_geometry() function,
which returns the spatial geometries of the trips in the feed. This function allows
us to specify which trips we want to generate the geometries of, so we are only
going to apply the procedure to the trips present in the average headways table:

selected_trips <- average_headway$trip_id

geometries <- get_trip_geometry(
 filtered_gtfs,
 trip_id = selected_trips,
 file = "shapes"
)

head(geometries)

Simple feature collection with 6 features and 2 fields
Geometry type: LINESTRING
Dimension: XY
Bounding box: xmin: -46.98404 ymin: -23.73644 xmax: -46.63535
 ymax: -23.19474
Geodetic CRS: WGS 84
 trip_id origin_file geometry
1 CPTM L07-0 shapes LINESTRING (-46.63535 -23.5...
2 CPTM L07-1 shapes LINESTRING (-46.87255 -23.1...
3 CPTM L08-0 shapes LINESTRING (-46.64073 -23.5...
4 CPTM L08-1 shapes LINESTRING (-46.98404 -23.5...
5 CPTM L09-0 shapes LINESTRING (-46.77604 -23.5...
6 CPTM L09-1 shapes LINESTRING (-46.69711 -23.7...

Finally, we need to join the average headway data to the geometries and
then configure the map as wished. In the example below, the color and line width
of each trip geometry varies with its headway:

geoms_with_headways <- merge(
 geometries,
 average_headway,
 by = "trip_id"
)

ggplot(geoms_with_headways) +
 geom_sf(aes(color = average_headway, size = average_headway),
 alpha = 0.8) +

GTFS Data Manipulation and Visualization | 79

 scale_color_gradient(high = "#132B43", low = "#56B1F7") +
 labs(color = "Average headway", size = "Average headway") +
 theme_minimal()

FIGURE 9
Headways spatial distribution in SPTrans’ GTFS

Source: Figure generated by the code snippet above.

As we can see, {gtfstools} makes the analysis of GTFS feeds a simple
task that requires only basic knowledge of table manipulation packages (such
as {data.table} or {dplyr}). The example shown in this section illustrates
how one could use many of the package’s functions together to reveal important
aspects of public transport systems specified in the GTFS format.

