
As publicações do Ipea estão disponíveis para download gratuito nos formatos PDF (todas)
e EPUB (livros e periódicos). Acesse: http://www.ipea.gov.br/portal/publicacoes

As opiniões emitidas nesta publicação são de exclusiva e inteira responsabilidade dos autores, não exprimindo,
necessariamente, o ponto de vista do Instituto de Pesquisa Econômica Aplicada ou do Ministério do
Planejamento e Orçamento.

É permitida a reprodução deste texto e dos dados nele contidos, desde que citada a fonte. Reproduções para fins
comerciais são proibidas.

© Instituto de Pesquisa Econômica Aplicada – ipea 2023

Título do capítulo
CHAPTER 3
CALCULATING ACCESSIBILITY ESTIMATES IN R

Autor(es)
Rafael H. M. Pereira
Daniel Herszenhut

DOI DOI: http://dx.doi.org/10.38116/9786556350653chap3

Título do livro Introduction to Urban Accessibility: a practical guide with R

Organizadores(as) Rafael H. M. Pereira
Daniel Herszenhut

Volume 1

Série -

Cidade Rio de Janeiro

Editora Instituto de Pesquisa Econômica Aplicada (Ipea)

Ano 2023

Edição 1a

ISBN 9786556350653

DOI DOI: http://dx.doi.org/10.38116/9786556350653

CHAPTER 3

3 CALCULATING ACCESSIBILITY ESTIMATES IN R

3.1 Calculating a travel time matrix

The first step to estimate the accessibility levels in a study area is to calculate the
travel cost matrix between the various origins and destinations that make up
this area. As previously mentioned, in the scientific literature and in transport
planning practice this cost is generally represented by the travel time between
two points (El-Geneidy et al., 2016; Venter, 2016), although recent studies have
also considered other factors, such as trip monetary costs and the comfort of a
trip between origins and destinations (Arbex and Cunha, 2020; Herszenhut et
al., 2022). In this book, we will focus on travel time matrices as they are the most
widely used in the literature and in practice, and we will cover other types of costs
in a future book on advanced accessibility analysis in R.

Currently, the easiest and fastest way to generate a travel time matrix in R is
using the {r5r} package (Pereira et al., 2021), developed by the AOP team. The
package provides a simple and friendly interface to the R5 multimodal transport
routing engine, developed by Conveyal.5

3.1.1 Installing {r5r}

Installing {r5r} works the same as installing any other R package (all code
snippets from this point onward must be run in an R session).

install.packages("r5r")

In addition to R, {r5r} also requires installing Java 11.6 Use the command
below to check the version of Java installed in your computer.

cat(processx::run("java", args = "-version")$stderr)

openjdk version "11.0.19" 2023-04-18
OpenJDK Runtime Environment (build 11.0.19+7-post-Ubuntu-
0ubuntu120.04.1)

OpenJDK 64-Bit Server VM (build 11.0.19+7-post-Ubuntu-
0ubuntu120.04.1, mixed mode, sharing)

5. Available at: https://github.com/conveyal/r5.
6. Java 11 is available at: https://www.oracle.com/java/technologies/downloads/#java11; or at https://jdk.java.net/
java-se-ri/11.

https://github.com/conveyal/r5
https://jdk.java.net/java-se-ri/11
https://jdk.java.net/java-se-ri/11

Introduction to Urban Accessibility: a practical guide with R28 |

As we can see, the version installed in the book is compatible with {r5r}. If
the version installed in your machine is not compatible (i.e. if running the code
above results in an output mentioning version 12 or 1.8.0, for example), please
install Java 11.

3.1.2 Required data

Using {r5r} requires different types of data. The list below describes the required
and optional data sets and indicates where you could obtain these data.

1) Street network (required): a file in .pbf format containing the street
network and pedestrian infrastructure as described by OpenStreetMap
(OSM). It can be downloaded using: {osmextract} (R package);
Geofabrik; HOT Export Tool; or BBBike Extract Service.

2) Public transport network (optional): one or more GTFS files describing
the public transport network of the study area. If absent, public transport
trips are not considered in the travel time matrix. This type of data can
be downloaded using: {tidytransit} (R package); or Transitland. In
chapter 4 (table 9) we also show where to download the GTFS files of
Brazilian cities that share their data publicly.

3) Topography (optional): a raster file containing the digital elevation
model data of the study area in .tif/.tiff format. This data set
is required if you wish to consider the effects of topography on
walking and cycling travel times. It can be downloaded using:
{elevatr} (R package); or National Aeronautics and Space
Administration (Nasa) SRTMGL1.

BOX 1
OSM data quality

OSM is a geographic database that provides information about street networks, buildings, parks
etc. OSM is maintained by a community of volunteers, so the coverage and quality of its data can widely
vary between regions (Barrington-Leigh and Millard-Ball, 2017). OSM data tend to have better coverage
and quality in more developed regions and in urban areas with large populations (Barrington-Leigh and
Millard-Ball, 2017; Camboim, Bravo and Sluter, 2015).

Authors’ elaboration.

These data sets should be saved in a single directory, which should preferably
not contain any other files. As we will see below, {r5r} combines all the data
saved in this directory to create a multimodal transport network that is used for
routing trips between origin-destination pairs and, consequently, for calculating
travel time matrices. Please note that you can have more than one GTFS file in
the same directory, in which case {r5r} considers the public transport networks

https://docs.ropensci.org/osmextract/
https://download.geofabrik.de/
https://export.hotosm.org/
https://extract.bbbike.org/
https://r-transit.github.io/tidytransit/
https://www.transit.land/
https://github.com/jhollist/elevatr
https://lpdaac.usgs.gov/products/srtmgl1v003/

Calculating Accessibility Estimates in R | 29

of all feeds together. The street network and the topography of the study area,
however, must be each one described by a single file. Assuming that R scripts are
saved in a directory called R, a possible file structure is shown below:

/tmp/RtmpaPPJmV/accessibility_project
├── R
│ ├── script1.R
│ └── script2.R
└── r5
 ├── public_transport_network.zip
 ├── street_network.osm.pbf
 └── topography.tif

To illustrate the features of {r5r}, we will use a small data sample from the
city of Porto Alegre (Brazil). This data is available within {r5r} itself, and its path
can be accessed with the following command:

data_path <- system.file("extdata/poa", package = "r5r")
data_path

[1] "/home/runner/work/intro_access_book/renv/library/R-4.3/
x86_64-pc-linux-gnu/r5r/extdata/poa"

fs::dir_tree(data_path)

/home/runner/work/intro_access_book/renv/library/R-4.3/x86_64-
pc-linux-gnu/r5r/extdata/poa

├── poa_elevation.tif
├── poa_eptc.zip
├── poa_hexgrid.csv
├── poa_osm.pbf
├── poa_points_of_interest.csv
└── poa_trensurb.zip

This directory contains five files that we will use throughout this chapter
and are listed below.

1) An OSM street network: poa_osm.pbf.
2) A GTFS feed describing some of the city’s bus routes: poa_eptc.zip.
3) A GTFS feed describing some of the city’s train routes: poa_trensurb.zip.
4) The digital elevation model of the city: poa_elevation.tif.
5) The poa_hexgrid.csv file, containing the geographic coordinates of

the centroids of a regular hexagonal grid covering the entire study area

Introduction to Urban Accessibility: a practical guide with R30 |

and information about the number of residents, jobs, hospitals and
schools in each grid cell. These points will be used as the origins
and destinations when calculating the travel time matrix.

3.1.3 Computing the travel time matrix

Before calculating the travel time matrix, we need to increase the memory available
to run Java processes, used by the underlying R5 routing engine. This is necessary
because R allocates only 512 MB of memory to Java processes by default, which is
often not enough to calculate large matrices with {r5r}. To increase the available
memory to 2 GB, for example, we use the following command at the beginning
of the script, even before loading the R packages that will be used in our analysis:

options(java.parameters = "-Xmx2G")

We can then proceed with the travel time matrix calculation, which we
carry out in two steps. First, we need to generate a multimodal transport network
that will be used to route trips between origin-destination pairs. To do this, we
load {r5r} and use the setup_r5() function, which downloads the R5 routing
engine and uses it to build the network. This function receives the path to the
directory where the input data is saved and saves some files describing the routing
network to this directory. It also outputs a connection to R5, which we named
r5r_core in this example. This connection is responsible for linking the function
calls with the transport network and is used to calculate the travel time matrix.

library(r5r)

r5r_core <- setup_r5(data_path, verbose = FALSE)

fs::dir_tree(data_path)

/home/runner/work/intro_access_book/renv/library/R-4.3/x86_64-
pc-linux-gnu/r5r/extdata/poa

├── fares
│ └── fares_poa.zip
├── network.dat
├── network_settings.json
├── poa_elevation.tif
├── poa_eptc.zip
├── poa_hexgrid.csv
├── poa_osm.pbf
├── poa_osm.pbf.mapdb
├── poa_osm.pbf.mapdb.p
├── poa_points_of_interest.csv
└── poa_trensurb.zip

Calculating Accessibility Estimates in R | 31

The second and final step is to actually calculate the travel time matrix with
the travel_time_matrix() function. As basic inputs, the function receives the
connection with R5 created above, origin and destination points as data.frames
with columns id, lon and lat, the mode of transport considered, the departure
time, the maximum walking time allowed when accessing public transport
stations from the origin and when egressing from the last stop to the destination,
and the maximum travel time allowed for trips. The function also accepts several
other inputs, such as the walking speed and the maximum number of public
transport legs allowed, among others.7

read data.frame with grid centroids
points <- data.table::fread(file.path(data_path,

"poa_hexgrid.csv"))

ttm <- travel_time_matrix(
 r5r_core,
 origins = points,
 destinations = points,
 mode = c("WALK", "TRANSIT"),
 departure_datetime = as.POSIXct(
 "13-05-2019 14:00:00",
 format = "%d-%m-%Y %H:%M:%S"
),
 max_walk_time = 30,
 max_trip_duration = 120,
 verbose = FALSE,
 progress = FALSE
)

head(ttm)

 from_id to_id travel_time_p50
1: 89a901291abffff 89a901291abffff 1
2: 89a901291abffff 89a9012a3cfffff 71
3: 89a901291abffff 89a901295b7ffff 41
4: 89a901291abffff 89a901284a3ffff 57
5: 89a901291abffff 89a9012809bffff 43
6: 89a901291abffff 89a901285cfffff 35

7. For more information on each parameter, please refer to the function documentation in an R session (with the
commands ?travel_time_matrix() or help("travel_time_matrix")) or on {r5r} website, available at:
https://ipeagit.github.io/r5r/reference/travel_time_matrix.html.

https://ipeagit.github.io/r5r/reference/travel_time_matrix.html

Introduction to Urban Accessibility: a practical guide with R32 |

In practice, travel_time_matrix() finds the fastest route from each origin
to all possible destinations taking into account the transport mode, the departure
time and the other inputs set by the user. For this, {r5r} considers door-to-door
travel times: in the case of a public transport trip, for example, the total travel
time includes: i) the walking time from the origin to the public transport stop;
ii) the waiting time at the stop; iii) the in-vehicle time; and iv) the walking time
from the last public transport stop to the destination. When more than one
public transport route is used, {r5r} also considers the time spent on transfers,
which consists of walking between stops and waiting for the next vehicle.

BOX 2
Routing speed with travel_time_matrix()

The travel_time_matrix() function uses an extension of the RAPTOR routing algorithm (Conway,
Byrd and Van Der Linden, 2017), making R5 extremely fast. Depending on the number of origin-destination
pairs, {r5r} can calculate travel time matrices between 6 and 200 times faster than other multimodal
routing softwares (Higgins et al., 2022).

Authors’ elaboration.

3.2 Calculating accessibility

Having calculated the travel time matrix between the origins and destinations,
we need to use it to calculate accessibility levels in the study area. For this, we
will use the {accessibility}8 package, also developed by the AOP/Ipea team,
which provides several functions to calculate many accessibility measures. As
basic inputs, all functions require a pre-calculated cost matrix (in our case, the
travel time matrix calculated in the previous section) and some land use data,
such as the number of opportunities in each cell that covers the study area.

3.2.1 Cumulative opportunities measure

The cumulative_cutoff() function is used to calculate the number of
opportunities that can be reached within a given travel cost limit. In the example
below, we first load the {accessibility} package and then calculate the number
of schools that can be reached in 30 minutes from each origin.

library(accessibility)

rename column to use {accessibility} package
data.table::setnames(ttm, "travel_time_p50", "travel_time")

cum_opportunities <- cumulative_cutoff(

8. Available at: https://github.com/ipeaGIT/accessibility.

https://github.com/ipeaGIT/accessibility

Calculating Accessibility Estimates in R | 33

 ttm,
 land_use_data = points,
 opportunity = "schools",
 travel_cost = "travel_time",
 cutoff = 30
)

head(cum_opportunities)

 id schools
1: 89a901291abffff 23
2: 89a9012a3cfffff 0
3: 89a901295b7ffff 18
4: 89a901284a3ffff 4
5: 89a9012809bffff 20
6: 89a901285cfffff 84

3.2.2 Minimum travel cost

The cost_to_closest() function, on the other hand, calculates the minimum
travel cost required to reach a certain number of opportunities. With the code
below, for example, we calculate the minimum travel time to reach the nearest
hospital from each origin.

min_time <- cost_to_closest(
 ttm,
 land_use_data = points,
 opportunity = "healthcare",
 travel_cost = "travel_time"
)

head(min_time)

 id travel_time
1: 89a9012124fffff Inf
2: 89a9012126bffff 19
3: 89a9012127bffff 16
4: 89a90128003ffff 14
5: 89a90128007ffff 11
6: 89a9012800bffff 13

Introduction to Urban Accessibility: a practical guide with R34 |

3.2.3 Gravity measures

The gravity() function calculates gravity-based accessibility measures, those
in which the weight of each opportunity gradually decreases as the travel cost
increases. Since many different decay functions can be used to calculate gravity
measures, such as the negative exponential, inverse power etc. This function
receives an additional input: the decay function that should be used to calculate
the opportunity weights. The example below calculates accessibility to schools
using a negative exponential gravity measure with a decay parameter of 0.2.

negative_exp_grav <- gravity(
 ttm,
 land_use_data = points,
 opportunity = "schools",
 travel_cost = "travel_time",
 decay_function = decay_exponential(0.2)
)

head(negative_exp_grav)

 id schools
1: 89a901291abffff 0.428108826
2: 89a9012a3cfffff 0.003987477
3: 89a901295b7ffff 0.606786304
4: 89a901284a3ffff 0.079661746
5: 89a9012809bffff 0.494632773

6: 89a901285cfffff 1.987657134

3.2.4 Competitive measures

Finally, the floating_catchment_area() function calculates accessibility levels
considering the competition for opportunities using different FCA methods.
Because several FCA methods can be used, the function requires users to
indicate which method to use. In addition, just like the gravity() function,
the decay function must also be defined by the user. The following code shows
an example of how to calculate accessibility to schools using the BFCA method
(Páez, Higgins and Vivona, 2019) and an exponential decay function with a
decay parameter of 0.05.

bfca_competition <- floating_catchment_area(
 ttm,
 land_use_data = points,
 opportunity = "schools",
 travel_cost = "travel_time",
 demand = "population",

Calculating Accessibility Estimates in R | 35

 method = "bfca",
 decay_function = decay_exponential(0.05)
)

head(bfca_competition)

 id schools
1: 89a901291abffff 2.628973e-04
2: 89a9012a3cfffff 5.875302e-05
3: 89a901295b7ffff 2.123543e-04
4: 89a901284a3ffff 1.414356e-04
5: 89a9012809bffff 2.254543e-04
6: 89a901285cfffff 3.901031e-04

The functions presented in this section can also receive other inputs not
explicitly mentioned here. For more information on each parameter, please refer
to the documentation of the {accessibility} package on its website.

3.2.5 Calculating accessibility with {r5r}

In the previous two sections, we learned how to calculate accessibility levels
step-by-step. For didactic purposes, it is important to understand that calculating
accessibility first requires calculating a travel cost matrix which is then used to
estimate accessibility levels. However, {r5r} also includes an accessibility()
function that calculates accessibility levels in a single call, which is much faster
and does not require intermediate steps.

Similar to the travel time matrix function, accessibility() receives as
inputs a connection to R5, origins, destinations, transport mode, departure
time, among other arguments. Additionally, it also requires users to list which
opportunities and which decay function should be considered, as well as the
value of the cost threshold/decay parameter, depending on the decay function.
The example below shows how to use this function to calculate a cumulative
opportunity metric (decay_function = “step”). In this example, we calculate
the number of schools accessible by walk and public transport in 30 minutes
(cutoffs = 30).

r5r_access <- accessibility(
 r5r_core,
 origins = points,
 destinations = points,
 opportunities_colname = "schools",
 decay_function = "step",
 cutoffs = 30,

https://ipeagit.github.io/accessibility/

Introduction to Urban Accessibility: a practical guide with R36 |

 mode = c("WALK", "TRANSIT"),
 departure_datetime = as.POSIXct(
 "13-05-2019 14:00:00",
 format = "%d-%m-%Y %H:%M:%S"
),
 max_walk_time = 30,
 max_trip_duration = 120,
 verbose = FALSE,
 progress = FALSE
)

head(r5r_access)

 id opportunity percentile cutoff accessibility
1: 89a901291abffff schools 50 30 21
2: 89a9012a3cfffff schools 50 30 0
3: 89a901295b7ffff schools 50 30 16
4: 89a901284a3ffff schools 50 30 4
5: 89a9012809bffff schools 50 30 17
6: 89a901285cfffff schools 50 30 78

There is one small difference between r5r::accessibility() and
accessibility::cumulative_cutoff(). In r5r::accessibility(), the
function only considers trips below the travel time threshold, while
accessibility::cumulative_cutoff() considers trips with costs equal or
below the maximum threshold. That is, to perform the same operation above
but with cumulative_cutoff() we need to set a cutoff of 29 minutes, not 30.
We compare the results of the two functions with the code below.

cum_cutoff_29 <- cumulative_cutoff(
 ttm,
 land_use_data = points,
 opportunity = "schools",
 travel_cost = "travel_time",
 cutoff = 29
)

access_comparison <- merge(
 r5r_access,
 cum_cutoff_29,
 by = "id"
)

data.table::setnames(

Calculating Accessibility Estimates in R | 37

 access_comparison,
 old = c("accessibility", "schools"),
 new = c("r5r_access", "accessibility_access")
)

head(access_comparison[, .(id, r5r_access, accessibility_access)])

 id r5r_access accessibility_access
1: 89a9012124fffff 1 1
2: 89a9012126bffff 12 12
3: 89a9012127bffff 14 14
4: 89a90128003ffff 30 30
5: 89a90128007ffff 21 21

6: 89a9012800bffff 29 29

As we can see, the results of the two functions are identical after this small
adjustment. The main difference between the two methods, however, is that the
“intermediate” information of travel time between origins and destinations is
not available when using r5r::accessibility(). Still, this workflow can be a
good alternative for people who are solely interested in the accessibility levels and
do not require the travel time between points in their analyses. Also, note that
the {accessibility} package has a wider range of accessibility indicators and
provides more flexibility for users to define custom decay functions.

BOX 3
Considering other types of travel costs when calculating accessibility

Another difference between {r5r} accessibility function and {accessibility} functions is the fact
that the latter can work with various types of travel costs, such as time, monetary cost, comfort etc.
{r5r} function, however, is less flexible, and only considers travel time constraints.

Authors’ elaboration.

3.3 Accessibility analyses

Having calculated accessibility levels, we can now analyze them. There is a wide
variety of analyses that can be performed using this data: diagnosis of urban
accessibility conditions in different neighborhoods, analyses of inequalities
in access to opportunities between different social groups, analyses of social
exclusion and accessibility poverty etc. In this section, however, we will present
only two relatively simple and easy-to-communicate analyses: the spatial
distribution of accessibility and its distribution among different income groups.

Introduction to Urban Accessibility: a practical guide with R38 |

3.3.1 The spatial distribution of urban accessibility

To understand how urban accessibility is spatially distributed in a given city or
region, we first need to obtain the spatial information of the points we have used
as origins and destinations in our travel cost matrix. The points we used in
the previous examples correspond to the centroids of a hexagonal grid based on the
H3 index, developed by Uber (Brodsky, 2018). The grid of Porto Alegre, as well
as some sociodemographic and land use data aggregated to it, is made available
by the AOP team through the {aopdata} R package (Pereira et al., 2022). The
package and its functions are presented in detail in section 5. With the code below,
we load the data visualization package, download the grid and present it in a map.

library(ggplot2)

download spatial grid
poa_grid <- aopdata::read_grid("Porto Alegre")

keeps only the cells used in the travel time matrix
poa_grid <- subset(poa_grid, id_hex %in% points$id)

plot map
ggplot(poa_grid) + geom_sf() + theme_minimal()

FIGURE 1
Hexagonal grid covering central Porto Alegre

Source: Figure generated by the code snippet above.

https://h3geo.org/

Calculating Accessibility Estimates in R | 39

To spatially visualize accessibility data, we need to combine the table of
accessibility estimates with the table that contains the spatial grid, using the
hexagon identification columns as key columns. The code below shows how to
merge the two tables and plot the map. In this example, we are going to use the
cumulative access to schools in 30 minutes that we have calculated previously.

spatial_access <- merge(
 poa_grid,
 cum_opportunities,
 by.x = "id_hex",
 by.y = "id"
)

ggplot(spatial_access) +
 geom_sf(aes(fill = schools), color = NA) +
 scale_fill_viridis_c(option = "inferno") +
 labs(fill = "Accessible\nschools") +
 theme_minimal()

FIGURE 2
Spatial distribution of accessibility to schools in central Porto Alegre

Source: Figure generated by the code snippet above.

Introduction to Urban Accessibility: a practical guide with R40 |

As the map above shows, accessibility levels tend to be higher in the city
center, where there is a greater concentration of schools, and close to the major
transport corridors, as the people who live closer to these high-capacity and speed
corridors tend to access distant locations relatively fast. In contrast, people who
live farther away from these corridors depend on lower-frequency and speed
modes (such as municipal buses, for example) and need to spend more time to
reach the medium/high-capacity corridors. As a result, the accessibility levels of
those living far from the city center and from high-capacity corridors tend to be
relatively lower.

3.3.2 The distribution of urban accessibility across socioeconomic groups

Figure 2, although useful to reveal the places with the highest and lowest levels of
accessibility, says nothing about the socioeconomic conditions of the people who
have better or worse accessibility conditions in the region. To understand this, we
need to join the previously calculated accessibility data with the demographic and
economic information of the people living in each grid cell.

In the example below, we merge the accessibility estimates with the
information of average income decile of the population in each cell (data also
made available through the {aopdata} package).

download population and socioeconomic data
poa_population <- aopdata::read_population("Porto Alegre",
showProgress = FALSE)

renames the columns with population count and income decile
data
data.table::setnames(
 poa_population,
 old = c("P001", "R003"),
 new = c("pop_count", "decile")
)

merge accessibility and population tables
sociodemographic_access <- merge(
 spatial_access,
 poa_population,
 by = "id_hex"
)

head(sociodemographic_access[, c("id_hex", "schools",

"pop_count", "decile")])

Calculating Accessibility Estimates in R | 41

Simple feature collection with 6 features and 4 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: -51.25678 ymin: -30.1111 xmax: -51.19031 ymax: -30.06699
Geodetic CRS: WGS 84

 id_hex schools pop_count decile geometry
1 89a9012124fffff 1 733 9 POLYGON ((-51.25083 -30.111...
2 89a9012126bffff 13 355 9 POLYGON ((-51.25369 -30.106...
3 89a9012127bffff 14 996 10 POLYGON ((-51.2538 -30.1094...
4 89a90128003ffff 34 1742 4 POLYGON ((-51.19446 -30.071...
5 89a90128007ffff 23 477 5 POLYGON ((-51.19744 -30.069...
6 89a9012800bffff 34 501 4 POLYGON ((-51.19137 -30.070...

With the information on the income decile of each hexagon, we can analyze
the distribution of accessibility levels by income groups. For this, we need to
weigh the accessibility level of each origin by the number of people who reside
there. This will tell us the accessibility distribution of the people located in cells
with a given income decile. If we do not weigh the accessibility estimate by the
population, we will have the accessibility distribution of the cells per se, and not
of the people located in each cell. Since our analysis focuses on people, and
not on the spatial units in which they are aggregated, weighting the accessibility
levels by the population count is an essential part of it. The accessibility distribution
of each decile is shown below.

ggplot(subset(sociodemographic_access, !is.na(decile))) +
 geom_boxplot(
 aes(
 x = as.factor(decile),
 y = schools,
 color = as.factor(decile),
 weight = pop_count
)
) +
 labs(
 color = "Income\ndecile",
 x = "Income decile",
 y = "Accessible schools"
) +
 scale_color_brewer(palette = "RdBu") +
 scale_x_discrete(
 labels = c("D1\npoorest", paste0("D", 2:9), "D10\nwealthiest")
) +
 theme_minimal()

Introduction to Urban Accessibility: a practical guide with R42 |

FIGURE 3
Distribution of accessibility to schools in central Porto Alegre by income decile

Source: Figure generated by the code snippet above.

Figure 3 is very clear: lower-income residents tend to have considerably
lower accessibility levels than high-income residents. This is a common pattern
in virtually all Brazilian cities (Pereira et al., 2020) and which results, to a
large extent, from the spatial distribution patterns of low- and high-income
communities: the wealthiest usually live in high-valued areas, close to large
employment hubs (and opportunities for education, health, leisure etc.) and with
relatively better public transport services. The poorest, on the other hand, tend
to live in the cities’ outskirts, where the land value is lower and the distances
from the large concentrations of opportunities are larger. Additionally, in
most cases the provision of mid- and high-capacity public transport services is
worse in regions with high concentrations of low-income residents. As a result,
low-income communities have, on average, much lower accessibility levels than
wealthier communities, as the chart illustrates.

