TEXTO PARA DISCUSSÃO Nº 833

HOSPITAIS UNIVERSITÁRIOS: INDICADORES DE UTILIZAÇÃO E ANÁLISE DE EFICIÊNCIA

Alexandre Marinho*

Rio de Janeiro, outubro de 2001

-

^{*} Da Diretoria de Estudos Sociais do IPEA. amarinho@ipea.gov.br

MINISTÉRIO DO PLANEJAMENTO, ORÇAMENTO E GESTÃO

Martus Tavares - Ministro
Guilherme Dias - Secretário Executivo

Presidente

Roberto Borges Martins

Chefe de Gabinete

Luis Fernando de Lara Resende

DIRETORIA

Eustáquio José Reis Gustavo Maia Gomes Hubimaier Cantuária Santiago Luís Fernando Tironi Murilo Lôbo Ricardo Paes de Barros

Fundação pública vinculada ao Ministério do Planejamento, Orçamento e Gestão, o IPEA fornece suporte técnico e institucional às ações governamentais e disponibiliza, para a sociedade, elementos necessários ao conhecimento e à solução dos problemas econômicos e sociais do país. Inúmeras políticas públicas e programas de desenvolvimento brasileiro são formulados a partir de estudos e pesquisas realizados pelas equipes de especialistas do IPEA.

Texto para Discussão tem o objetivo de divulgar resultados de estudos desenvolvidos direta ou indiretamente pelo IPEA, bem como trabalhos considerados de relevância para disseminação pelo Instituto, para informar profissionais especializados e colher sugestões.

Tiragem: 130 exemplares

DIVISÃO EDITORIAL

Supervisão Editorial: Helena Rodarte Costa Valente

Revisão: Alessandra Senna Volkert (estagiária), André Pinheiro,

Elisabete de Carvalho Soares, Lucia Duarte Moreira,

Luiz Carlos Palhares e Miriam Nunes da Fonseca

Editoração: Carlos Henrique Santos Vianna, Rafael Luzente de Lima, Roberto das Chagas Campos e Ruy Azeredo de

Menezes (estagiário)

Divulgação: Libanete de Souza Rodrigues e Raul José Cordeiro Lemos

Reprodução Gráfica: Cláudio de Souza e Edson Soares

Rio de Janeiro - RJ

Av. Presidente Antonio Carlos, 51, 14º andar - CEP 20020-010 Tels.: (0xx21) 3804-8116 / 8118 – Fax: (0xx21) 2220-5533 Caixa Postal: 2672 – E-mail: editrj@ipea.gov.br

Brasília - DF

SBS. Q. 1, Bl. J, Ed. BNDES, 10° andar - CEP 70076-900 Tels.: (0xx61) 3315-5336 / 5439 – Fax: (0xx61) 315-5314 Caixa Postal: 03784 – E-mail: editbsb@ipea.gov.br

Home page: http://www.ipea.gov.br

ISSN 1415-4765

© IPEA, 2000

É permitida a reprodução deste texto, desde que obrigatoriamente citada a fonte. Reproduções para fins comerciais são rigorosamente proibidas.

SUMÁRIO

RESUMO

ABSTRACT

1 - INTRODUÇÃO	1
2 - MOTIVAÇÕES	2
3 - ANÁLISE DA EFICIÊNCIA TÉCNICA DOS HOSPITAIS	2
3.1 - Explicitação Informal do Método Proposto	3
3.2 - Os Modelos de DEA Escolhidos	
3.3 - Variáveis de Interesse Disponíveis	
3.4 - Análise dos Resultados	
4 - A INTENSIDADE E A FREQÜÊNCIA DE UTILIZAÇÃO NOS HOSPITAIS FEDERAIS	10
4.1 - Os Indicadores Propostos	10
4.2 - As Análises Realizadas.	
4.3 - Os Resultados	
5 - EFICIÊNCIA TÉCNICA E INDICADORES DE UTILIZAÇÃO	
5.1 - Motivações	
5.2 - Os Modelos Executados	
5.3 - Forma Geral dos Modelos de Regressão em Painel	
5.4 - Os Resultados	
5.5 - Comentários	24
6 - CONSIDERAÇÕES FINAIS	24
APÊNDICE	26
BIBLIOGRAFIA	28

RESUMO

O presente texto estuda o desempenho dos 45 hospitais universitários federais brasileiros (HUs) durante cinco semestres a partir de 1998, realizando análises específicas e conexões entre indicadores de eficiência técnica e de utilização da capacidade de atendimento dos HUs. Os indicadores de eficiência técnica são extraídos de modelos de programação matemática referidos na literatura como análise de envoltória de dados [data envelopment analysis (DEA)]. Os indicadores de utilização são a taxa de ocupação, a taxa de rotatividade e o prazo médio de internação. Além de resultados individuais para os hospitais, são feitos recortes metodológicos que permitem estudar o desempenho dos HUs em níveis regional e temporal, por porte (número de leitos) e por tipos de clínica (médica e cirúrgica). A conexão entre os indicadores de eficiência e os indicadores de utilização foi realizada com o recurso de um modelo de regressão em painel (panel data model) para os cinco semestres disponíveis, permitindo a constatação de relações interessantes entre os distintos indicadores.

ABSTRACT

This paper studies the performance of 45 Brazilian federal teaching hospitals, within five semesters as from 1998 by connecting and assessing technical efficiency scores and service indicators. The efficiency scores are obtained from a data envelopment analysis (DEA) model. The service indicators used are the occupancy rate, the turnover rate and the average length of stay. The approach allows for regional and temporal analysis, besides bed size and clinical specialties (medicine and surgery) insights. By connecting efficiency scores and service indicators in a panel data regression model, some interesting relationships between these variables are achieved.

1 - INTRODUÇÃO

O hospital universitário é uma organização peculiarmente complexa. Sua missão organizacional primordial é recuperar, manter e incrementar os padrões de saúde de seres humanos. Essa missão demanda um conjunto altamente divergente e complexo de atividades tais como a realização de atendimentos, exames, diagnósticos e tratamentos, o planejamento e a execução de internações e intervenções cirúrgicas, as práticas do ensino e da pesquisa, e a formação de profissionais de saúde. Em 1999, os 45 hospitais universitários federais (HUs) foram responsáveis por 12.302.079 consultas, 389.200 internações e 517.466 cirurgias, oferecendo 6.610 leitos com receitas totais de R\$ 593.537.566,30. Estudar o desempenho dos HUs é uma tarefa essencial do setor público.

Este estudo do desempenho dos hospitais universitários federais está, em grande medida, baseado na combinação de três instrumentos metodológicos complementares:

- *a*) a técnica de programação e de otimização matemáticas, denominada análise de envoltória de dados [*data envelopment analysis* (DEA)];
- b) indicadores tradicionais de avaliação da utilização de hospitais: o prazo médio de permanência; a taxa de rotatividade; e a taxa de ocupação; e
- c) modelos de regressão em painel (*panel data model*) relacionando o escore de eficiência obtido com a DEA ao prazo médio de permanência dos hospitais.

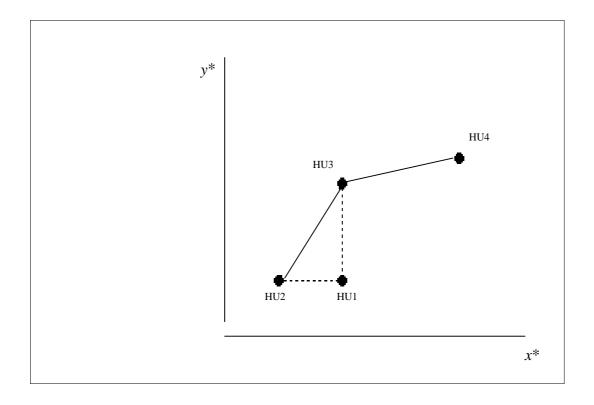
Hospitais, tanto quanto universidades, são exemplos clássicos de organizações e de problemas gerenciais complexos, nos quais os sistemas de avaliação e de incentivos desempenham papéis primordiais. Marinho e Façanha (2000) compartilham o ponto de vista da literatura, que enfatiza a complementaridade entre a DEA e os indicadores de desempenho tradicionais. O presente estudo avança mais um passo na direção da exploração dessa complementaridade. A combinação, por meio de modelos de regressão, de escores de eficiência obtidos com a DEA e o prazo médio de permanência, na análise do desempenho de hospitais, é certamente inédita no Brasil.

O objetivo principal do texto é sugerir, principalmente aos gestores de organizações hospitalares, mecanismos de orientação e de coordenação que possam subsidiar suas responsabilidades gerenciais e administrativas com propósitos de incentivar o gerenciamento mais efetivo, econômico e eficiente das organizações hospitalares.

O trabalho está dividido em seis seções, incluindo esta introdução. A Seção 2 explicita as motivações para o trabalho. A Seção 3 revela os níveis de eficiência técnica dos HUs. A Seção 4 explora os indicadores tradicionais de utilização dos serviços disponíveis nos hospitais. A Seção 5 combina, com o uso de modelos

econométricos, os escores de eficiência e os indicadores de utilização. A Seção 6 apresenta os comentários finais.

2 - MOTIVAÇÕES


A motivação principal decorre do que se considera virtude principal da metodologia a ser proposta. A avaliação do desempenho das organizações hospitalares estará baseada na combinação de indicadores tradicionais com uma técnica de avaliação comparativa que dispensa especificações arbitrárias da "função de transformação" de insumos em produtos. Trata-se de exploração de instrumentos de análise que, implementados repetidamente, permitem a gestores e a policy-makers virem a conhecer e melhor administrar aspectos importantes da "tecnologia", dos custos e de dimensões importantes do desempenho dos hospitais. Nesse sentido, a análise a ser proposta incorpora compatibilidades com objetivos de incentivo e, em particular, com objetivos de adesão de gestores ao método de avaliação. As organizações hospitalares universitárias que integram o objeto do presente estudo são organizações públicas, que se distinguem de organizações privadas, entre outras razões, por atenderem a objetivos múltiplos de políticas públicas, das quais os hospitais universitários são agentes, assim como a objetivos organizacionais. Adicionalmente, há também problemas de ponderação desses objetivos, e de consistência dos mesmo entre si, e intertemporalmente, uma vez que os objetivos e sua ponderação podem ser alterados com as mudanças das políticas públicas supervenientes.

3 - ANÁLISE DA EFICIÊNCIA TÉCNICA DOS HOSPITAIS

Esta seção terá início com uma representação simples da organização hospitalar como visto em Marinho e Façanha (2000). Trata-se de modelo de "entrada-saída", que controla, supondo desconhecidas, complexidades inerentes à estrutura organizacional interna, e ao processo de transformação. No caso, os *x*'s representam insumos (*inputs*) utilizados no processo de transformação, e os *y*'s denotam os produtos e serviços prestados (*outputs*). Os *y*'s também podem representar resultados intermediários (*throughputs*) de estratégias de trabalho ainda não finalizadas na organização.

Para facilitar o entendimento da metodologia de cálculo da eficiência técnica dos hospitais, recorre-se, à figura a seguir, em que x^* denota o insumo agregado e y^* denota o produto agregado produzido pelos hospitais HU1, HU2, HU3 e HU4. O hospital HU1 produz o mesmo nível de *output* que o hospital HU2, com maior utilização de *inputs*, e produz menor nível de *output* do que HU3, com utilização de mesma quantidade de *inputs*. Portanto, HU1 não é eficiente relativamente a HU2 nem a HU3. Mas não é trivial comparar a eficiência, por exemplo, do hospital HU2 com HU4. Recai-se, assim, no problema de definição de padrão de comparação. Esse requerido padrão de comparação será obtido recorrendo-se ao traçado de uma *fronteira de eficiência*, definida de tal modo que nenhum hospital

que faça parte (determine) da fronteira possa ser relativamente menos eficiente do que outro hospital da amostra, nem por qualquer unidade virtual originada pela combinação convexa dos *inputs* e dos *outputs* dos hospitais da amostra.

3.1 - Explicitação Informal do Método Proposto

A DEA, originariamente desenvolvida por Charnes, Cooper e Rhodes (1978), permite resolver o problema da identificação do padrão de comparação. Muito informalmente, a definição do padrão de comparação recomenda que se procure otimizar uma expressão da forma p_1 $y_1 + p_2$ $y_2 + ... + p_n$ y_n / w_1 $x_1 + w_2$ $x_2 + ... + w_m$ x_m , em que os p's e os w's, que são as ponderações de insumos (x) e produtos (y), são desconhecidos, com a restrição de que nenhuma das unidades avaliadas contrarie o padrão de comparação, localizando-se além da "fronteira" e do nível máximo de eficiência. Os "pesos" devem atender às restrições de nãonegatividade. Os inputs e outputs de cada um dos hospitais são comparados, com a combinação convexa dos inputs e outputs dos hospitais similares. Assim sendo, HU2, HU3 e HU4 determinariam a fronteira, o que não aconteceria com HU1. A fronteira é obtida com a utilização das observações, e não de prescrições ou idiossincrasias, fronteira esta que viria a caracterizar a best practice de referência, considerando as peculiaridades dos HUs. Na fronteira o escore de eficiência será máximo (100%). A relação a ser otimizada é utilizada para cada uma das observações, ou seja, o método fornece, simultaneamente à definição da fronteira e dos escores, os pesos (os "preços sombra"), p's e w's. Para explicitações técnicas da metodologia, ver Marinho (1996), e para aplicações da mesma em organizações hospitalares ver Marinho (1998), Marinho e Façanha (1998), e Marinho e Façanha (2000).

3.2 - Os Modelos de DEA Escolhidos

Em virtude da necessidade de atendimento a choques positivos de demanda, podese supor que organizações hospitalares públicas operem sempre (ou deveriam operar) com excesso de capacidade. Assim, conforme, por exemplo, Fare, Grosskopf e Valdmanis (1989), equilíbrios de curto prazo não seriam frequentes em tais organizações. O modelo concebido por Charnes, Cooper e Rhodes (1978), conhecido na literatura como modelo CCR pressupõe a presença de retornos constantes de escala, cuja existência, de acordo com a microeconomia, é mais frequente quando são considerados prazos mais longos. O modelo CCR é, portanto, mais adequado para o presente estudo. Adicionalmente, o modelo, ao buscar a eficiência, preferencialmente com base na maximização de produção, e não na redução do consumo de insumos é dito "orientado no sentido dos outputs" (output oriented) por questões que podem ser, principalmente, identificadas na natureza de serviço público dos hospitais sob análise. Alguns de seus principais insumos não podem ser reduzidos, pelo menos no sistema tomado como um todo. Médicos e demais funcionários são estáveis e instalações não podem ser vendidas. Ademais, hospitais caracterizam-se por depender de grandes estoques de capital fixo, inegociáveis sem perdas relevantes. Por tais razões, a pressuposição de maximização de outputs, dados os inputs, é mais adequada. Além disso, o modelo CCR é invariante no que se refere à orientação escolhida [ver Charnes, Cooper e Rhodes (1978)].

O modelo CCR considera o seguinte problema de programação linear fracionária:

$$\max_{u,v} h_k = \sum_{r=1}^{s} u_r y_{rk} / \sum_{i=1}^{m} v_i x_{ik}$$
 (1)

sujeito a:

$$\sum_{r=1}^{s} u_r y_{rj} / \sum_{i=1}^{m} v_i x_{ij} \le 1 \quad \text{(para } j = 1, 2, ..., k, ...n)$$
 (2)

$$u_r > 0$$
 (para $r = 1,...,s$) $v_i > 0$ (para $i = 1,...m$) (3)

O problema anterior é resolvido para cada DMU tomada como referência, de modo que existem *n* problemas de programação linear a serem solucionados. A solução deve gerar preços-sombra (os multiplicadores) ótimos para os *inputs* e

outputs, considerando-se as restrições de que nenhuma DMU pode estar além da fronteira (restrição 2) e de que os multiplicadores sejam positivos (restrição 3). O problema anterior é complexo, mas foi demonstrado em Charnes e Cooper (1962), que ele pode ser transformado em um problema equivalente de programação linear conforme a seguir:

$$\max_{u, v} w_k = \sum_{r=1}^{s} u_r y_{rk}$$
 (4)

sujeito a:

$$-\sum_{i=1}^{m} v_i x_{ij} + \sum_{r=1}^{s} u_r y_{rj} \le 0 \quad \text{para } j = 1, ..., n$$
 (5)

$$\sum_{i=1}^{m} v_i x_{ik} = 1 \tag{6}$$

$$u_r > 0$$
 para $r = 1,...,s$ $v_i > 0$ para $i = 1,...,m$ (7)

O problema precedente é um problema de programação linear, admitindo uma representação dual da seguinte forma:

$$\min \theta$$
 (8)

$$-\sum_{j=1}^{n} x_{ij} \lambda_{j} + \theta x_{ik} \ge 0 \quad \text{para} \quad i = 1, ..., m$$
 (9)

$$\sum_{j=1}^{n} y_{rj} \lambda_{j} \ge y_{rk} \quad \text{para} \quad r = 1, ..., s$$
 (10)

$$\lambda_j \ge 0$$
 para $j = 1,...,n$ (11)

Os escores que serão apresentados a seguir foram obtidos através da aplicação do modelo CCR em 45 HUs, com dados semestrais disponíveis para os anos de 1998, 1999 e 2000 (1º semestre), e com as variáveis definidas na próxima seção. Dois modelos foram executados. No primeiro (modelo 1), os HUs têm as suas eficiências avaliadas apenas dentro de cada período semestral, ou seja, a amostra para comparação restringe-se a cada semestre isoladamente. Assim, cada hospital é comparado com os outros apenas em um semestre, que é o mesmo para todos. No modelo 2, a totalidade dos hospitais em todos os semestres constitui a amostra. Nesse procedimento, apresentado em Marinho (1996), as unidades sob análise são comparadas, em cada período, com todas as realizações de todas as unidades,

inclusive dela mesma, em todos os períodos de observação. Nesse caso, comparase um determinado HU de um determinado período, com esse mesmo HU em períodos diferentes. Esse procedimento tem a vantagem de comparar mais diretamente a evolução intertemporal de todas as unidades. Adicionalmente, ao expandir a amostra em relação ao modelo 1, aumenta a capacidade de discriminação da DEA, o que é interessante sob o ponto de vista da realização de exercícios econométricos, conforme os que serão realizados mais adiante no estudo. Como é usual em problemas de programação linear [uma referência básica é Hillier (1995)], a solução factível envolve um aumento proporcional de todos os *outputs* (ou minimização proporcional de todos os *inputs*) e ajustes não-proporcionais na direção da fronteira (as folgas ou excessos, que podemos genericamente chamar de *slacks*). A restrição 2 indica que a eficiência global de uma unidade qualquer, representada pelos seus escores de eficiência estará no intervalo fechado entre 0% e 1% ou entre 0% e 100%.

3.3 - Variáveis de Interesse Disponíveis

O Ministério da Educação e do Desporto (MEC) vem liberando, desde 1997, um conjunto amplo de dados relacionados aos hospitais universitários. O conjunto de dados, referentes aos semestres dos anos de 1997 até 2000 (1º semestre), permite desenvolver o exercício que se apresentará na seção seguinte, e que engloba as seguintes variáveis:

Inputs (Siglas):

- área construída total (ACONSTOT);
- número de salas ativadas de ambulatório, emergência e cirurgias (SALAS);
- recursos financeiros recebidos do SUS (TOTSUSRE);
- número total de enfermeiros (TOTENFER);
- número total de médicos (TOTMEDIC);
- número total de leitos hospitalares ativos e de leitos de UTI adultos ativos (LEITOS);
- número total de docentes (TOTDOCEN).

Outputs (Siglas)

- número total de cirurgias (TOTGECIR);
- número total de consultas (TOTCONSU);
- número total de internações (TOTINTER);
- número total geral de exames (TOTEXAME);
- inverso da média das taxas de infecção hospitalar (INVINFHO);
- inverso do número total geral de óbitos (INVTGOBI);
- número total geral de altas (TOTGEALT);
- número total de médicos residentes (RESIDENT).

3.4 - Análise dos Resultados

Modelo 1: Nesse modelo, que realiza comparações apenas dentro dos semestres, a análise dos escores dos HUs, apresentados na Tabela 1, revela que o melhor desempenho dos HUs ocorre na região Norte, cujos três hospitais obtêm eficiência máxima (100%) em todos os anos, seguida da região Sul, com média geral igual a 94,67%. Seguem-se a região Centro-Oeste, com 94,03% e a região Nordeste com 93,43% de média. O pior desempenho ocorre na região Sudeste com média de eficiência nos cinco períodos igual a 92,94%. A média geral é igual a 93,91%, sem nenhuma tendência marcante de ascensão ou de queda nos cinco semestres. Nenhuma das regiões apresenta tendência assinalável de melhoria ou de piora de eficiência. A média de eficiência dos hospitais com menos de 200 leitos é 93,52 e dos hospitais com mais de 200 leitos é 95,12, o que assinala pequena variação entre os níveis médios de eficiência dos hospitais de maior e de menor portes.

Tabela 1 Hospitais Universitários Federais: Número Médio de Leitos e Escores de Eficiência no Modelo 1

Hospitais	Número Médio de Leitos	1998.1	1998.2	1999.1	1999.2	2000.1	Média
Região Norte	116	100,00	100,00	100,00	100,00	100,00	100,00
HGVAM	172	100,00	100,00	100,00	100,00	100,00	100,00
HBFPA	0	100,00	100,00	100,00	100,00	100,00	100,00
HJBPA	176	100,00	100,00	100,00	100,00	100,00	100,00
Região Nordeste	91	96,65	95,60	89,64	93,61	91,66	93,43
HUMA	208	100,00	100,00	100,00	100,00	100,00	100,00
HESBA	222	84,69	92,48	93,34	85,85	72,29	85,73
CPHBA	0	100,00	100,00	100,00	100,00	100,00	100,00
MCOBA	0	100,00	100,00	62,96	78,69	100,00	88,33
HWCCE	193	100,00	93,72	84,14	83,36	84,48	89,14
MACCE	0	100,00	100,00	100,00	100,00	100,00	100,00
HUAL	53	78,31	83,08	74,92	81,57	79,57	79,49
HLWPB	163	100,00	89,67	78,22	77,90	72,47	83,65
HACPB	124	89,38	87,94	76,03	100,00	75,65	85,80
HCPE	259	94,05	100,00	100,00	100,00	94,35	97,68
HABRN	10	100,00	100,00	100,00	100,00	100,00	100,00
MJCRN	2	100,00	100,00	100,00	100,00	100,00	100,00
HOLRN	173	100,00	82,69	64,62	90,41	87,72	85,09
HPRN	10	100,00	100,00	100,00	100,00	100,00	100,00
MHFSE	9	100,00	100,00	100,00	100,00	100,00	100,00
HUSE	36	100,00	100,00	100,00	100,00	100,00	100,00
Região Sudeste	175	91,48	94,05	92,81	91,87	94,49	92,94
HEMG	234	100,00	100,00	99,96	91,32	86,06	95,47
HAMES	144	76,94	85,99	89,60	92,59	100,00	89,02
HAPRJ	260	96,78	92,13	78,44	70,65	68,71	81,34
HCUMG	179	100,00	100,00	100,00	100,00	100,00	100,00
HCMG	206	100,00	100,00	100,00	100,00	100,00	100,00
IMGRJ	7	74,81	77,61	68,11	76,07	69,72	73,26
HFARJ	90	100,00	100,00	100,00	100,00	100,00	100,00

(continua)

/		~ \
(co)	ntinu	acãol

Hospitais	Número Médio de Leitos	1998.1	1998.2	1999.1	1999.2	2000.1	Média
CFFRJ	431	98,07	99,98	100,00	87,83	87,42	94,66
IGRJ	34	100,00	100,00	100,00	100,00	100,00	100,00
MERJ	5	99,25	100,00	100,00	100,00	100,00	99,85
IDCRJ	54	100,00	84,67	97,18	100,00	100,00	96,37
IDTRJ	32	82,64	100,00	84,14	88,28	100,00	91,01
IPRJ	173	68,20	89,59	67,50	63,20	100,00	77,70
HUMG	80	100,00	100,00	100,00	100,00	100,00	100,00
HSP	749	100,00	100,00	100,00	100,00	100,00	100,00
GGRJ	121	66,91	74,82	100,00	100,00	100,00	88,35
Região Sul	219	94,38	96,88	92,56	94,43	95,12	94,67
HCJRS	76	100,00	100,00	100,00	100,00	100,00	100,00
HPARS	415	100,00	100,00	100,00	100,00	100,00	100,00
HEPRS	152	100,00	100,00	100,00	100,00	100,00	100,00
HUSC	77	100,00	87,64	70,27	72,69	86,65	83,45
HURS	192	70,00	93,76	90,26	99,41	89,40	88,57
HCPR	399	96,28	99,89	94,81	94,48	94,65	96,02
Região Centro-							
Oeste	140	92,83	96,47	94,32	92,04	94,51	94,03
HCGO	208	90,32	94,21	100,00	93,04	99,67	95,45
HAPMS	114	81,00	100,00	100,00	100,00	100,00	96,20
HJMMT	65	100,00	100,00	100,00	100,00	100,00	100,00
HUDF	171	100,00	91,67	77,26	75,10	78,35	84,48
Média Geral	144	94,39	95,59	92,26	93,39	93,94	93,91

Modelo 2: Nesse modelo, que realiza comparações entre todos os hospitais em todos os semestres, a análise dos escores dos HUs, apresentados na Tabela 2, revela que o melhor desempenho dos HUs, de modo similar ao modelo 1, ocorre na região Norte, cujos três hospitais obtêm eficiência média de 94,96% em todos os anos, seguida da região Sul, com média geral igual a 85,78 %. Seguem-se a região Nordeste, com 85,09% e a região Sudeste com 82,04% de média. O pior desempenho ocorre na região Centro-Oeste com média de eficiência nos cinco períodos igual a 78,81%. A média geral é igual a 84,20% sem nenhuma tendência marcante de ascensão ou de queda nos cinco semestres. Apesar do mau desempenho relativo nesse modelo, a região Centro-Oeste teve uma ligeira melhoria ao longo do período. As demais regiões têm desempenho praticamente estável. A média de eficiência dos hospitais com menos de 200 leitos é igual a 84,24 e a média dos HUs com mais de 200 leitos é 83,91, evidenciando pouca variação entre os hospitais de maior e de menor porte.

Tabela 2 Hospitais Universitários Federais: Número Médio de Leitos e Escores de Eficiência no Modelo 2

Efficiencia no Mou							
Hospitais	Número Médio de Leitos	1998.1	1998.2	1999.1	1999.2	2000.1	Média
Região Norte	116	91,78	100,00	95,05	92,99	94,99	94,96
HGVAM	172	100,00	100,00	100,00	100,00	100,00	100,00
HBFPA	0	75,34	100,00	100,00	100,00	100,00	95,07
HJBPA	176	100,00	100,00	85,14	78,98	84,96	89,82
Região Nordeste	91	86,12	87,07	82,89	86,46	82,91	85,09
HUMA	208	82,02	95,12	100,00	100,00	100,00	95,43
HESBA	222	77,69	71,51	73,50	78,45	65,10	73,25
СРНВА	0	79,21	100,00	100,00	96,58	82,81	91,72
MCOBA	0	100,00	100,00	53,38	51,26	95,77	80,08
HWCCE	193	91,35	77,68	74,85	71,81	71,18	77,37
MACCE	0	100,00	95,08	100,00	100,00	100,00	99,02
HUAL	53	61,85	61,46	62,83	66,75	66,56	63,89
HLWPB	163	73,46	65,41	63,34	63,54	59,36	65,02
HACPB	124	68,96	80,58	64,31	100,00	63,16	75,40
HCPE	259	83,66	84,33	100,00	100,00	81,31	89,86
HABRN	10	100,00	100,00	92,65	100,00	98,25	98,18
MJCRN	2	100,00	97,63	89,74	100,00	88,25	95,12
HOLRN	173	72,76	68,33	51,67	55,02	54,81	60,52
HPRN	10	100,00	100,00	100,00	100,00	100,00	100,00
MHFSE	9	91,53	100,00	100,00	100,00	100,00	98,31
HUSE	36	95,40	96,02	100,00	100,00	100,00	98,28
Região Sudeste	175	82,30	81,29	79,06	82,64	84,92	82,04
HEMG	234	84,66	90,47	77,94	75,26	75,86	80,84
HAMES	144	69,58	66,38	67,03	68,57	69,84	68,28
HAPRJ	260	73,20	72,86	63,76	68,28	60,73	67,77
HCUMG	179	87,52	80,39	86,49	100,00	82,41	87,36
HCMG	206	90,40	84,87	88,09	98,34	100,00	92,34
IMGRJ	7	51,72	56,96	56,10	63,86	62,20	58,17
HFARJ	90	100,00	96,26	96,03	100,00	98,19	98,10
CFFRJ	431	86,16	90,89	90,24	85,42	81,65	86,87
IGRJ	34	100,00	100,00	88,22	84,02	100,00	94,45
MERJ	5	78,84	84,88	74,10	73,93	100,00	82,35
IDCRJ	54	100,00	73,63	76,60	100,00	100,00	90,05
IDTRJ	32	74,54	80,21	69,21	68,77	69,21	72,39
IPRJ	173	62,88	63,31	55,94	54,78	86,96	64,77
HUMG	80	100,00	100,00	100,00	100,00	100,00	100,00
HSP	749	100,00	100,00	100,00	100,00	100,00	100,00
GGRJ	121	57,24	59,59	75,23	80,99	71,70	68,95
Região Sul	219	90,78	83,78	84,03	85,86	84,45	85,78
HCJRS	76	100,00	94,87	98,18	98,56	100,00	98,32
HPARS	415	100,00	100,00	97,55	98,75	97,67	98,79
HEPRS	152	91,94	91,43	92,54	95,60	89,91	92,28
HUSC	77	100,00	60,34	61,13	64,57	63,58	69,92
HURS	192	66,05	73,14	72,31	75,35	74,82	72,33
HCPR	399	86,67	82,87	82,48	82,31	80,73	83,01
Região Centro-Oeste	140	75,45	75,59	84,78	80,72	77,54	78,81
HCGO	208	72,18	70,33	99,96	89,19	79,96	82,32
HAPMS	114	64,60	75,96	73,14	72,58	60,90	69,44
HJMMT	65	88,71	87,48	100,00	95,51	100,00	94,34
HUDF	171	76,30	68,60	66,01	65,58	69,28	69,15
Média Geral	144	84,81	84,42	82,66	84,95	84,16	84,20

4 - A INTENSIDADE E A FREQÜÊNCIA DE UTILIZAÇÃO NOS HOSPITAIS FEDERAIS

4.1 - Os Indicadores Propostos

Objetivando aprofundar a descrição das características da prestação de serviços pelos hospitais conveniados ao SUS três indicadores clássicos serão utilizados com base nos dados disponíveis até então na presente pesquisa: a taxa de ocupação de leitos, o prazo médio de internação e a taxa de rotatividade dos leitos. A relação matemática entre esses indicadores permite a análise simultânea dos mesmos. Essa análise será realizada também com o auxílio de recursos gráficos bastante simples. Todos esses indicadores podem ser calculados em bases anuais. Formalmente, em termos semestrais, cada um desses indicadores tem as seguintes definições:

Taxa de Ocupação = número de dias de internação em um semestre/(180* número de leitos disponíveis no ano). A taxa de ocupação dos leitos mede a porcentagem total dos leitos hospitalares que está ocupada por pacientes em um determinado período de tempo, em um dado hospital.

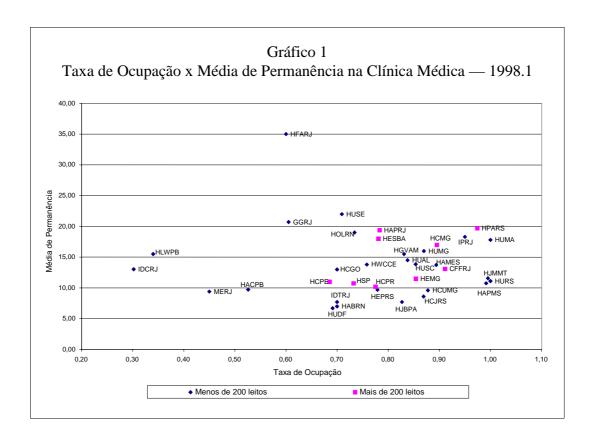
Prazo Médio de Permanência (Internação) = número de dias de internação em um semestre/número de pacientes no semestre. O prazo médio de permanência evidencia o número médio de dias que os pacientes de um hospital ficam internados.

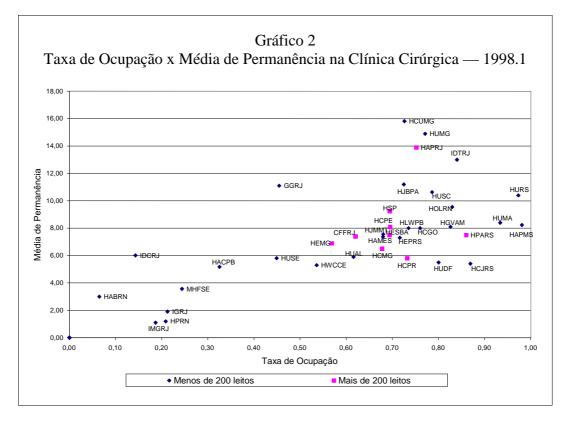
Taxa de Rotatividade = número de internações em um semestre/número de leitos disponíveis no semestre. A taxa de rotatividade dos leitos representa o número médio de internações por leito em um determinado período de tempo.

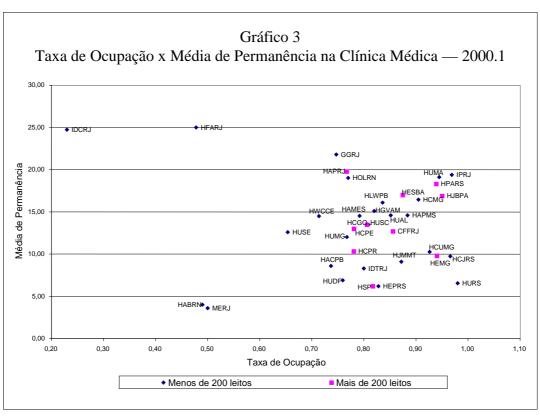
As taxas de ocupação e os prazos médios de permanência são fornecidos pelo MEC. Simples manipulação algébrica permite verificar que:

Taxa de rotatividade = (Taxa de ocupação*180)/Prazo médio de permanência.

Colocando-se em um gráfico cartesiano o prazo médio de permanência no eixo das ordenadas e a taxa de ocupação no eixo das abscissas, observa-se que o coeficiente angular de uma reta ajustada aos pontos será igual a 180 multiplicado pelo inverso da taxa de rotatividade. Dito de outro modo, para um determinado valor de prazo médio de permanência, quanto maior a taxa de ocupação, maior a taxa de rotatividade, ou seja, traçada uma reta horizontal passando em qualquer ponto do eixo Y (ordenadas = prazo médio de permanência), os pontos com maiores valores (valores mais à direita) de X (abscissas = taxa de ocupação) serão pontos com maiores taxas de rotatividade.


A análise da eficiência de hospitais ou de sistemas hospitalares com base nesses indicadores deve ser precedida de análises cuidadosas e de precauções indispensáveis. Maiores taxas de ocupação indicariam a menor ociosidade dos


leitos e, portanto, maior eficiência. Mas essa conclusão precisaria ser referendada pelo perfil dos custos e da qualidade dos serviços hospitalares. Não se deve deixar de observar, adicionalmente, que taxas de ocupação muito altas também podem indicar alta prevalência de morbidade, baixa resolutividade, pouca reserva para emergências e elevadas probabilidades de infecções hospitalares. Altas taxas de rotatividade podem significar altos números de reinternações. Dependendo do grau de complexidade da instituição e do tipo de diagnóstico subjacente, altas taxas de rotatividade podem significar, também, internações desnecessárias. O prazo médio de permanência é um indicador também bastante complexo. Sob o ponto de vista estrito (e insuficiente) dos custos, baixos prazos médios de permanência indicariam menores custos hospitalares e caeteris paribus, maiores níveis de eficiência. Mas mesmo sob esse ponto de vista inadequadamente estrito isso pode não ser verdade [ver para mais detalhes, Fisher (1999)]. Os custos hospitalares costumam ter componentes fixos mais elevados no início das internações (por conta dos custos de instalação e exames iniciais) e nas altas (por conta dos custos de desinstalação e dos procedimentos de alta). Em prazos curtos, esses custos não podem ser diluídos, e o "custo médio diário per capita" de internação pode ser mais elevado do que em períodos mais longos. Por outro lado, baixos prazos médios de permanência podem significar apenas altas precoces (quicker but sicker), óbitos prematuros ou óbitos inevitáveis que, sob o ponto de vista de custos, demandariam internação em instituições outras que não hospitais universitários. Baixos prazos de médios de permanência também podem indicar o uso intensivo de recursos dos hospitais, elevando custos médios. Altos prazos de permanência podem, por outro lado, significar a baixa capacidade de resolução dos casos atendidos. Deve-se enfatizar a necessidade de se comparar os padrões de custos com os das receitas dos hospitais, caso se queira analisá-los sob a ótica de excedentes operacionais, pois a administração do tratamento dispensado aos pacientes e, por conseguinte, a própria tecnologia inerente aos hospitais serão afetadas pelas relações entre receitas e custos.


4.2 - As Análises Realizadas

Com o objetivo de explorar a extensa base de dados disponível com a utilização dos indicadores propostos na subseção anterior, um conjunto de gráficos e de tabelas foi criado, e passa a ser apresentado e discutido a seguir. Para tirar partido dos resultados e indicações obtidos em Marinho e Façanha (2000), onde havia um melhor desempenho dos hospitais de pequeno porte (menos de 200 leitos), os Gráficos 1 a 4 e as Tabelas 3 e 4 assinalam o porte dos hospitais de acordo com essa dicotomia (maiores ou menores que 200 leitos). O número médio geral de leitos é 144. Em todas as análises, somente foram computados os valores nos hospitais cujos dados para os indicadores são disponíveis e diferentes de zero. Idealmente, os indicadores deveriam ser implementados em todas as especialidades hospitalares. As limitações da base de dados restringiram as análises para as clínicas médica e cirúrgica. Com o intuito de poupar o leitor no que se refere à profusão de dados e de tabelas, alguns resultados são apresentados apenas para o primeiro (1998.1) e para o último (2000.1) semestres disponíveis o que, de modo geral, possibilita uma análise razoável da evolução temporal do

sistema. Os resultados de todos os semestres estão disponíveis e teriam sido apresentados caso tivessem relevância especial, o que não foi o caso. Sempre que possível, as médias gerais dos valores semestrais são apresentados, possibilitando uma visualização do quadro geral dos HUs. Mais do que valores absolutos, serão enfatizados os desempenhos relativos dos hospitais. Primeiramente, porque análises de desempenhos absolutos, que pressupõem a existência de benchmarks exógenos ao sistema ou de parâmetros de engenharia, não são recomendáveis em instituições de caráter público e social com as especificidades e complexidades de hospitais universitários. Adicionalmente, conforme asseveram Ferrier e Valdmanis (1996), hospitais públicos são melhor administrados como sistemas do que individualmente. Embora os indicadores em tela não estejam disponíveis desagregados por especialidades no conjunto dos demais hospitais brasileiros, algumas comparações bastante preliminares poderiam ser realizadas. Verifica-se que as taxas de ocupação são sensivelmente iguais aos valores globais dos hospitais do SUS. Mas os prazos médios de permanência são sensivelmente maiores (aproximadamente o dobro) e as taxas de rotatividade são sensivelmente menores (aproximadamente a metade) do que os valores encontrados nos demais hospitais brasileiros do SUS; em termos médios (pode-se ver os valores desses indicadores em Marinho, Moreno e Cavalini (2001). Tais resultados são compatíveis com o grau de complexidade inerente às atividades de hospitais universitários.

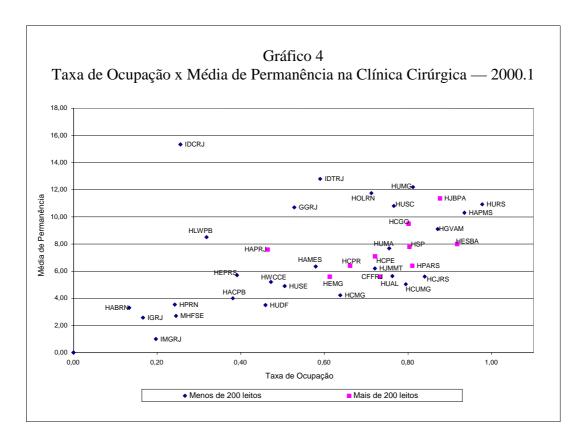


Tabela 3 Taxa de Ocupação, Prazo Médio de Permanência, Taxa de Rotatividade e Número de Leitos dos Hospitais — 1998.1

	NI-4	Clínica Médica			Clínica Cirúrgica			
Siglas	Número de Leitos	Taxa de Ocupação	Média de Permanência	Taxa de Rotatividade	Taxa de Ocupação	Média de Permanência	Taxa de Rotatividade	
MERJ	5	0,45	9,40	8,62	-	-	-	
IMGRJ	7	-	-	-	0,19	1,10	30,58	
MHFSE	9	-	-	-	0,24	3,56	12,34	
HPRN	10	-	-	-	0,21	1,20	31,35	
HABRN	13	0,70	7,00	18,00	0,07	3,00	3,90	
IDTRJ	32	0,70	7,70	16,36	0,84	13,00	11,63	
IGRJ	33	-	-	-	0,21	1,90	20,16	
HUSE	36	0,71	21,98	5,81	0,45	5,81	13,92	
IDCRJ	50	0,30	13,02	4,18	0,14	6,01	4,29	
HJBPA	50	0,83	7,70	19,33	0,73	11,20	11,65	
HUAL	53	0,84	14,50	10,40	0,62	5,90	18,78	
HJMMT	65	1,00	11,56	15,50	0,68	7,56	16,20	
HUMG	80	0,87	16,00	9,79	0,77	14,90	9,31	
HCJRS	82	0,87	8,60	18,19	0,87	5,40	28,97	
HEPRS	95	0,78	9,70	14,46	0,72	7,30	17,65	
HFARJ	100	0,60	35,00	3,09	-	-	-	
HAPMS	111	0,99	10,75	16,60	0,98	8,23	21,45	
GGRJ	113	0,61	20,70	5,26	0,46	11,10	7,38	

(continua)

(continuação)

	Número		Clínica Médi	ca		Clínica Cirúrgica			
Siglas	de Leitos	Taxa de Ocupação	Média de Permanência	Taxa de Rotatividade	Taxa de Ocupação	Média de Permanência	Taxa de Rotatividade		
HLWPB	114	0,34	15,50	3,95	0,74	8,00	16,54		
HAMES	144	0,89	13,73	11,72	0,68	7,37	16,60		
HACPB	147	0,53	9,73	9,73	0,33	5,18	11,31		
HUSC	152	0,85	13,85	11,10	0,79	10,64	13,30		
HUDF	165	0,69	6,70	18,57	0,80	5,50	26,19		
IPRJ	170	0,95	18,30	9,34	-	-	-		
HCUMG	173	0,88	9,60	16,46	0,73	15,82	8,26		
HOLRN	174	0,73	19,00	6,95	0,83	9,55	15,64		
HURS	174	1,00	11,10	16,22	0,97	10,40	16,84		
HGVAM	175	0,83	15,50	9,65	0,83	8,10	18,36		
HWCCE	189	0,76	13,80	9,89	0,54	5,30	18,20		
HUMA	193	1,00	17,80	10,11	0,93	8,40	20,01		
HCGO	195	0,70	13,00	9,69	0,76	8,00	17,10		
Média (< 200)	100	0,76	13,75	11,44	0,61	7,48	16,35		
HESBA	207	0,78	18,00	7,81	0,69	7,50	16,65		
HEMG	213	0,85	11,50	13,37	0,57	6,90	14,84		
HCMG	220	0,90	17,00	9,48	0,68	6,50	18,77		
HCPE	241	0,69	11,00	11,21	0,70	8,10	15,44		
HAPRJ	254	0,78	19,40	7,26	0,75	13,90	9,74		
HCPR	399	0,78	10,20	13,68	0,73	5,80	22,72		
HPARS	417	0,97	19,70	8,90	0,86	7,50	20,64		
CFFRJ	468	0,91	13,10	12,52	0,62	7,40	15,08		
HSP	759	0,73	10,75	12,26	0,69	9,25	13,51		
Média (> 200)	353	0,82	14,52	10,72	0,70	8,09	16,38		

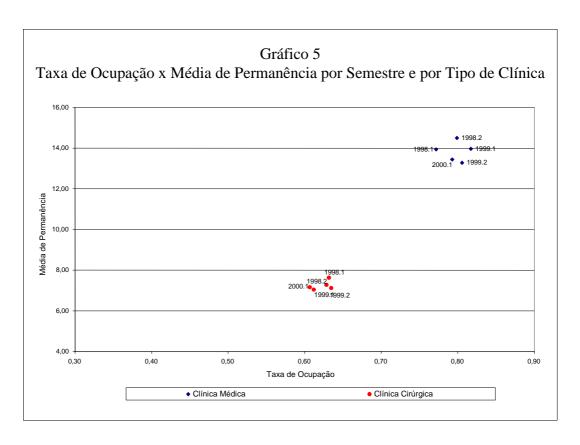
Tabela 4 **Taxa de Ocupação, Prazo Médio de Permanência, Taxa de Rotatividade e Número de Leitos dos Hospitais** — **2000.1**

	Número		Clínica Médic	a	Clínica Cirúrgica			
Siglas	de Leitos	Taxa de Ocupação	Média de Permanência	Taxa de Rotatividade	Taxa de Ocupação	Média de Permanência	Taxa de Rotatividade	
Média Geral	159	0,79	13,44	12,86	0,61	7,16	16,96	
MERJ	5	0,50	3,60	25,00	-	-	-	
IMGRJ	7	-	-	_	0,20	1,00	35,46	
MHFSE	9	_	-	-	0,25	2,70	16,33	
HPRN	10	-	-	-	0,24	3,53	12,34	
HABRN	10	0,49	4,00	22,05	0,13	3,30	7,25	
IDTRJ	32	0,80	8,30	17,35	0,59	12,80	8,30	
IGRJ	33	-	-	_	0,17	2,57	11,63	
HUSE	36	0,65	12,60	9,34	0,51	4,90	18,55	
HFARJ	50	0,48	25,00	3,44	-	-	-	
HUAL	53	0,85	14,60	10,50	0,76	5,63	24,38	
HJMMT	65	0,87	9,10	17,25	0,72	6,20	20,92	
IDCRJ	69	0,23	24,73	1,67	0,26	15,34	3,00	
HEPRS	72	0,83	6,20	24,04	0,39	5,70	12,35	
HCJRS	76	0,97	9,75	17,83	0,84	5,60	27,00	

(continua)

(continuação)

	Número	_	Clínica Médic	a	Clínica Cirúrgica			
Siglas	de Leitos	Taxa de	Média de	Taxa de	Taxa de	Média de	Taxa de	
		Ocupação	Permanência	Rotatividade	Ocupação	Permanência	Rotatividade	
HUMG	80	0,77	12,02	11,49	0,81	12,20	11,98	
HACPB	90	0,74	8,60	15,43	0,38	4,00	17,15	
HAPMS	115	0,88	14,60	10,90	0,94	10,30	16,34	
GGRJ	124	0,75	21,80	6,17	0,53	10,70	8,88	
HAMES	144	0,79	14,52	9,82	0,58	6,34	16,45	
HUSC	152	0,81	13,50	10,79	0,77	10,80	12,77	
HOLRN	167	0,77	19,02	7,29	0,71	11,75	10,91	
HGVAM	169	0,82	15,10	9,77	0,87	9,10	17,23	
HUDF	174	0,76	6,90	19,82	0,46	3,50	23,61	
IPRJ	175	0,97	19,40	8,99	-	-	-	
HLWPB	176	0,84	16,10	9,35	0,32	8,50	6,73	
HURS	176	0,98	6,55	26,93	0,98	10,92	16,11	
HCMG	179	0,90	16,45	9,90	0,64	4,22	27,21	
HCUMG	181	0,93	10,26	16,25	0,79	5,04	28,39	
HUMA	182	0,94	19,12	8,89	0,76	7,68	17,70	
HWCCE	194	0,71	14,50	8,86	0,47	5,20	16,34	
Média (< 200)	100	0,77	13,32	13,04	0,56	7,02	16,49	
HJBPA	210	0,95	16,89	10,13	0,88	11,37	13,87	
HESBA	217	0,87	17,00	9,26	0,92	8,00	20,64	
HCGO	217	0,81	13,50	10,75	0,80	9,50	15,18	
HEMG	243	0,94	9,81	17,25	0,61	5,60	19,69	
HCPE	250	0,78	13,00	10,81	0,72	7,10	18,28	
HAPRJ	261	0,77	19,80	6,97	0,46	7,60	10,99	
CFFRJ	389	0,86	12,70	12,13	0,73	5,60	23,56	
HCPR	391	0,78	10,33	13,60	0,66	6,40	18,59	
HPARS	414	0,94	18,30	9,24	0,81	6,40	22,78	
HSP	760	0,82	6,20	23,72	0,80	7,80	18,53	
Média (> 200)	335	0,85	13,75	12,39	0,74	7,54	18,21	


4.3 - Os Resultados

As Tabelas 3 e 4 e os Gráficos 1, 2, 3 e 4 retratam os indicadores de taxa de ocupação, prazo médio de permanência, e taxa de rotatividade dos hospitais nos semestres 1998.1 e 2000.1, assinalando também o número de leitos dos HUs. Em ambos os períodos, a clínica médica tem maior taxa de ocupação, quase o dobro do prazo médio de permanência e menor rotatividade do que a clínica cirúrgica, o que é razoável, ante as características dos cuidados dispensados em cada clínica. Problemas crônicos são mais freqüentes na população do que as cirurgias, demandando mais tempo de internação. A taxa de ocupação é ligeiramente maior nos hospitais de maior porte. O prazo médio de permanência e a taxa de rotatividade não são muito afetadas pelo tamanho dos hospitais. Pode-se apenas constatar que os hospitais com mais de 200 leitos têm taxas de ocupação e prazo médio de permanência ligeiramente maiores. A taxa de rotatividade média é maior na clínica médica dos pequenos hospitais do que nos que têm mais de 200 leitos, ocorrendo o oposto na clínica cirúrgica. Em ambas as clínicas, em todos os três indicadores, é grande a dispersão de valores pelos HUs.

A Tabela 5 e o Gráfico 5 retratam as médias, no conjunto dos HUs, da taxa de ocupação, do prazo médio de permanência e da taxa de rotatividade na clínica médica e na clínica cirúrgica. A taxa de ocupação e o prazo médio de permanência na clínica médica fazem um interessante movimento de *looping*, no sentido horário, ao longo dos períodos, crescendo até 1999.1 e decrescendo a partir desse semestre. A taxa de rotatividade vem sofrendo um ligeiro, mas persistente, incremento na clínica médica. Os demais indicadores são bastante estáveis em ambas as clínicas.

Tabela 5 Valores Médios Semestrais da Taxa de Ocupação, do Prazo Médio de Permanência e da Taxa de Rotatividade por Tipo de Clínica

		Clínica Médica	Clínica Cirúrgica				
Semestres	Taxa de Ocupação	Prazo Médio de Permanência	Taxa de Rotatividade	Taxa de Ocupação	Prazo Médio de Permanência	Taxa de Rotatividade	
1998.1	0,77	13,94	11,26	0,63	7,63	16,25	
1998.2	0,80	14,50	11,79	0,63	7,28	17,63	
1999.1	0,82	13,96	12,49	0,61	7,04	17,06	
1999.2	0,81	13,28	12,88	0,63	7,12	17,99	
2000.1	0,79	13,44	12,86	0,61	7,16	16,96	
Média	0,80	13,83	12,26	0,62	7,25	17,18	

As Tabelas 6 e 7 e o Gráfico 6 retratam os valores semestrais da taxa de ocupação, do prazo médio de permanência e da taxa de rotatividade nos HUs de acordo com as regiões do país. A taxa de ocupação é sensivelmente menor no Sudeste e no Nordeste em todos os períodos em ambas as clínicas, denotando maior ociosidade dos leitos nessas regiões do que nas demais. Essa maior ociosidade é mais acentuada na clínica cirúrgica do que na clínica médica. O prazo médio de permanência é significativamente maior no Sudeste e no Norte do que nas outras regiões. Nesse indicador, as diferenças são ligeiramente mais acentuadas na clínica médica do que na clínica cirúrgica. A região Centro-Oeste tem a maior taxa de rotatividade na clínica médica em todos os períodos. As outras regiões se alternam nas demais posições desse indicador. Na clínica cirúrgica, existe grande alternância de posições. O Norte tem o menor valor médio, seguido pelo Sudeste.

Tabela 6 Valores Semestrais da Taxa de Ocupação, do Prazo Médio de Permanência e da Taxa de Rotatividade nas Regiões do País, na Clínica Médica

		1998.1		1998.2			
Regiões	Taxa de Ocupação	Média de Permanência	Taxa de Rotatividade	Taxa de Ocupação	Média de Permanência	Taxa de Rotatividade	
Norte	0,83	11,60	14,49	0,90	14,94	10,92	
Nordeste	0,73	14,49	10,01	0,79	13,47	11,91	
Sudeste	0,74	15,37	9,98	0,77	16,29	11,50	
Sul	0,85	12,41	13,26	0,84	13,84	11,37	
Centro-Oeste	0,84	10,50	15,09	0,83	11,70	13,44	
Média	0,80	12,88	12,57	0,83	14,05	11,83	

		1999.1			1999.2	
Regiões	Taxa de Ocupação	Média de Permanência	Taxa de Rotatividade	Taxa de Ocupação	Média de Permanência	Taxa de Rotatividade
Norte	0,77	14,93	9,21	0,82	13,16	11,37
Nordeste	0,84	13,30	14,05	0,75	13,09	11,91
Sudeste	0,78	14,77	11,76	0,81	14,70	13,01
Sul	0,84	14,60	11,18	0,86	12,13	12,83
Centro-Oeste	0,88	11,68	14,07	0,89	10,38	15,91
Média	0,84	13,86	12,05	0,82	12,69	13,01

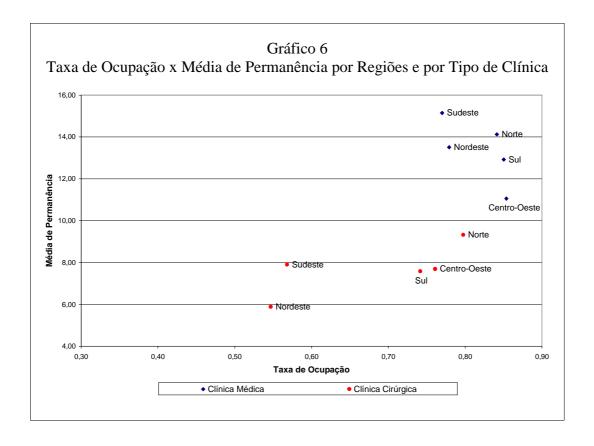

		2000.1		Média Geral			
Regiões	Taxa de Ocupação	Média de Permanência	Taxa de Rotatividade	Taxa de Ocupação	Média de Permanência	Taxa de Rotatividade	
Norte	0,89	16,00	9,95	0,84	14,12	11,19	
Nordeste	0,78	13,19	12,61	0,78	13,51	12,10	
Sudeste	0,75	14,61	12,15	0,77	15,15	11,68	
Sul	0,86	11,62	15,10	0,85	12,92	12,75	
Centro-Oeste	0,83	11,03	14,68	0,85	11,06	14,64	
Média	0,86	13,29	12,90	0,85	13,35	12,47	

Tabela 7 Valores Semestrais da Taxa de Ocupação, do Prazo Médio de Permanência e da Taxa de Rotatividade nas Regiões do País, na Clínica Cirúrgica

		1998.1		1998.2			
Regiões	Taxa de Ocupação	Média de Permanência	Taxa de Rotatividade	Taxa de Ocupação	Média de Permanência	Taxa de Rotatividade	
Norte	0,78	9,65	15,00	0,81	9,41	15,68	
Nordeste	0,53	5,96	16,17	0,59	5,90	19,27	
Sudeste	0,56	8,86	13,33	0,55	7,72	15,91	
Sul	0,82	7,84	20,02	0,72	7,78	18,14	
Centro-Oeste	0,81	7,32	20,23	0,77	8,18	18,47	
Média	0,70	7,93	16,95	0,69	7,80	17,49	
		1999.1			1999.2		

		1999.1			1999.2	
Regiões	Taxa de Ocupação	Média de Permanência	Taxa de Rotatividade	Taxa de Ocupação	Média de Permanência	Taxa de Rotatividade
Norte	0,76	8,86	15,50	0,77	8,46	16,57
Nordeste	0,56	5,77	17,82	0,55	5,75	18,16
Sudeste	0,55	7,51	15,71	0,62	7,97	17,31
Sul	0,72	7,36	18,62	0,71	7,30	18,98
Centro-Oeste	0,74	7,98	17,59	0,77	7,58	18,88
Média	0,67	7,49	17,05	0,68	7,41	17,98

		2000.1		Média Geral			
Regiões	Taxa de Ocupação	Média de Permanência	Taxa de Rotatividade	Taxa de Ocupação	Média de Permanência	Taxa de Rotatividade	
Norte	0,87	10,24	15,55	0,80	9,32	15,66	
Nordeste	0,51	6,02	15,55	0,55	5,88	17,39	
Sudeste	0,55	7,45	17,24	0,57	7,90	15,90	
Sul	0,74	7,64	18,27	0,74	7,58	18,81	
Centro-Oeste	0,73	7,38	19,01	0,76	7,69	18,84	
Média	18,88	7,74	17,12	19,01	7,67	17,32	

5 - EFICIÊNCIA TÉCNICA E INDICADORES DE UTILIZAÇÃO

5.1 - Motivações

A combinação dos resultados da DEA com outros indicadores, particularmente os originados em modelos de regressão, é fortemente recomendada na literatura [por exemplo, em Thanassoulis (1993)]. O que se pretende nesta seção é explorar a potencial complementaridade da análise de custo-efetividade proporcionada pela utilização da DEA com os indicadores de utilização. Mesmo não sendo entidades com fins lucrativos, o comportamento dos hospitais deve guardar relação com critérios de maximização de excedentes operacionais, sem que tal comportamento implique descuido de suas missões organizacionais mais preciosas, relatadas no início do presente trabalho. Ford e Kaserman (2000), afirmam que "(...) os efeitos de estruturas alternativas de propriedade sobre a qualidade de cuidados médicos torna-se uma questão empírica (...)". Posições bastante semelhantes são observadas em Sloan et alii (1998), Keeler et alii (1999), Arnould et alii (2000), Dugan (2000), Sloan (2000) e Eldenburg et alii (2001). No presente caso, a conexão da análise de eficiência relativa retratada com o uso da DEA com os indicadores de utilização é proveitosa e oportuna. Conforme observam Dranove e Ludwick (1999), "Diferenças nos prazos de permanência podem refletir diferenças de estilos de atuação ou diferenças de eficiência". Pode-se, com esse procedimento metodológico, observar a extensão dos esforços dos HUs na busca de desempenhos relativos virtuosos, levando-os a escolher tecnologias e níveis de custos socialmente eficientes (condicionados por sua almejada efetividade), o que coloca essa pesquisa no leito da importante temática da *yardstick competition* [Shleifer (1985)].

5.2 - Os Modelos Executados

A escolha dos modelos executados obedece razões técnicas e empíricas que convém explicitar. A taxa de rotatividade é obtida com a divisão do número de internações pelo número de leitos, ambas as variáveis também utilizadas na DEA. Como se trata da divisão de um *output* por um *input*, quanto maior a taxa, maior a eficiência técnica. A utilização da taxa de rotatividade como regressor seria redundante. A taxa de ocupação é o resultado da divisão do número total de dias de internação pela capacidade total de internação do hospital, capacidade essa obtida pela multiplicação do número de leitos por 180 (número de dias do semestre). Os leitos são *inputs* na DEA. O prazo médio de permanência se obtém com a divisão do número total de dias de internação pelo número de casos de internação. O número de internações é um *output* no cálculo de eficiência técnica na DEA. Ambos os indicadores, a taxa de ocupação e o prazo médio de permanência, dependem, por definição, do prazo total de internação, mas o prazo total de internação não é utilizado na DEA, por não se tratar de um insumo para produção em sentido estrito. Os gestores hospitalares não controlam diretamente os prazos totais de internação mas, certamente, ao controlar a intensidade dos tratamentos individuais e ao avaliar os pacientes, controlam os prazos médios de internação. E esses gestores são, majoritariamente, os médicos que, de acordo com Chilingerian (1994), "(...) controlam 80% das decisões relacionadas com dispêndios na atenção médica". Conforme já discutido, a questão da recuperação dos custos médios diários per capita pelos hospitais tem de ser estudada e hipóteses a respeito das implicações dessa recuperação de custos sobre o tratamento dispensado aos pacientes devem ser testadas. A estratégia dos hospitais em relação aos prazos de internação dependerá de como a curva de custos dos hospitais se comporta em relação ao tempo e do modo de remuneração dos mesmos. As formas de remuneração dos HUs são bastante complexas. Os pagamentos do SUS são feitos com base em procedimentos, o que incentivaria a redução dos prazos de permanência. Mas as verbas do Ministério da Educação, recursos próprios dos hospitais e das universidades dos quais eles fazem parte, e verbas relacionadas a programas ou atividades de pesquisa seguem outras lógicas. Assim, existe, a ser testada, a hipótese de que os hospitais, na busca de eficiência técnica, minimizam, ou não, os prazos das internações, cuja contrapartida empírica, neste estudo, é o prazo médio de permanência na clínica médica e na clínica cirúrgica dos diferentes HUs. Esses prazos serão utilizados como variáveis independentes em regressões onde o escore de eficiência é a variável dependente. Com o objetivo de explorar a existência de uma série de dados em cinco semestres para as variáveis já especificadas na DEA e analisar as heterogeneidades entre os hospitais do estudo, um conjunto de análises de regressão foi realizado, sendo apresentados os resultados de um modelo em painel (panel data model) para os cinco semestres disponíveis nos modelos 1 e 2 da Seção 3. O modelo admite as

alternativas de presença de efeito fixo ou de efeito aleatório, conforme apresentado seguir.

5.3 - Forma Geral dos Modelos de Regressão em Painel

Seja o modelo de regressão:

$$y_{it} = \alpha_i + \beta_{it} x_{it} + \varepsilon_{it}$$

em que y_{it} é a variável dependente. Além do termo constante, existem K regressores em x_{it} . O efeito individual é α_i , constante ao longo do tempo t e específico ao hospital i; ε_{it} é uma perturbação aleatória clássica. Em modelos de efeito fixo α_i seria um termo constante específico de cada grupo (cada hospital) na regressão. Em modelos de efeito aleatório, α_i seria uma perturbação aleatória específica de cada grupo (hospital). Os testes estatísticos para verificação da presença de um modelo de efeito fixo ou de um modelo de efeito aleatório são os testes de multiplicadores de Lagrange, que envolvem uma distribuição quiquadrado e o teste de Hausman, que também envolve uma distribuição do tipo qui-quadrado. Ambos os testes estão detalhados em Greene (1997) e são automaticamente executados no software LIMDEP 7.0.

No presente estudo, a variável independente será a eficiência técnica de cada hospital, e os regressores serão os prazos médios de permanência na clínica médica (MEDPCLMD) e na clínica cirúrgica (MEDPCLMD), os únicos adequadamente disponíveis, conforme já assinalado. Os principais insumos e produtos relevantes para a determinação de eficiência dos HUs já foram incluídos na DEA. Uma questão relevante em estudos de eficiência de hospitais é o controle do risco dos pacientes [ver, por exemplo, McClellan (1997)], que pode induzir diferentes desempenhos em unidades expostas a diferentes graus de severidade dos casos atendidos. Essa assimetria demandaria a introdução de variável de controle de risco na regressão, de modo a compensar as distorções. No caso em estudo, entretanto, esse problema é fortemente mitigado pela homogeneidade dos hospitais universitários, que são todos hospitais com perfil de alta complexidade de atendimento, estando sujeitos, todos, a riscos semelhantes (e elevados) na clientela. Essa homogeneidade dos hospitais também é importante na superação de problemas de auto-seleção (self-selection), em que pacientes escolhem as unidades com (supostas) melhores condições de atendimento, concentrando os casos mais graves nos (supostos) melhores hospitais. Como esses hospitais não têm, majoritariamente, perfil de atendimento de emergências e nem de atendimento ambulatorial muito simples, a demanda sofre uma seleção na "porta de entrada", por critérios internos às unidades, reduzindo as possibilidades de self-selection. De resto, a variável de controle usual para esse problema é a localização relativa (endereços) de pacientes e hospitais [ver McClellan (op. cit.)] dados esses que não estão disponíveis. Um problema que permanece é a distorção causada pela migração regional ou entre estados. Tais migrações são possíveis quando pacientes se defrontam com a necessidade de encontrar solução para problemas graves e crônicos de saúde.

5.4 - Os Resultados

Modelo 1

Variável	Coeficiente (b)	Desvio-padrão (D. P)	b/D.P.	P[Z >z]	Multiplicador de Lagrange (1 g.l.)	Estatística de Hausman (2 g.l)
MEDPCLMD	-5,89E-03	3,27E-03	-1,800	0,072	94,04 (valor de prova = 0,000000)	4,40 (valor de prova = 0,110800)
MEDPCLCR Constante	2,20E-03 94,753	3,40E-03 1,304	0,645 72,657	0,519 0,000		

A variável representativa do prazo médio de permanência na clínica médica (MEDPCLMD) é significativa no nível de teste de 10%, com sinal negativo na regressão, indicando que longos prazos médios de permanência na clínica médica (internações com longos prazos de duração) implicam menor eficiência dos HUs. O valor da constante da regressão é positivo e significativo. O valor da estatística do teste do multiplicador de Lagrange é 94,04 e o valor da estatística do teste de Hausman é 4,40, o que indica a presença de um modelo de efeito fixo [ver, para maiores detalhes, Greene (*op. cit.*)]. Nesse caso, as diferenças de eficiência entre os hospitais podem ser capturadas pela constante da regressão, indicando que existe um patamar fixo de eficiência para cada hospital da amostra, além dos acréscimos de eficiência que podem ser obtidos com a redução dos prazos médios de permanência na clínica médica.

Modelo 2

Variável	Coeficiente (b)	Desvio-padrão (D. P)	b/D. P.	P[Z >z]	Multiplicador de Lagrange (1 g.l.)	Estatística de Hausman (2 g.l)
MEDPCLMD	-1,22E-01	2,01E-02	-6,074	,	110,10 (valor de prova = 0,000000)	28,23 (valor de prova = 0,000001)
MEDPCLCR	-8,00E-03	3,42E-03	-2,338	0,019		_
Constante	89,813	1,670	53,794	0,000		

A variável MEDPCLMD (prazo médio de permanência na clínica médica) é significativa em qualquer nível de teste e a variável MEDPCLCR (prazo médio de permanência na clínica cirúrgica) é significativa ao nível de teste de 5%. Ambas apresentam coeficientes com sinal negativo, ou seja, os prazos médios de internação nessas clínicas e a eficiência técnica dos HUs variam em sentidos opostos. O valor da constante da regressão é positivo e significativo. O valor da estatística do teste do multiplicador de Lagrange é 110,10 e o valor da estatística do teste de Hausman é 28,23 o que, do mesmo modo que no modelo 1, indica a presença de um modelo de efeito fixo.

5.5 - Comentários

O sistema hospitalar universitário federal brasileiro tem o seu nível de eficiência técnica inversamente associado ao prazo médio de internação dos pacientes nas clínicas médica e cirúrgica, conforme os modelos executados no presente estudo. Antes que sejam feitas ilações a respeito da capacidade resolutiva do sistema diante de tal fenômeno, é importante ressaltar que, no cálculo da eficiência técnica, já foram consideradas as taxas de mortalidade nos hospitais. Deve-se também assinalar que as reinternações não foram consideradas, em virtude da inexistência de dados desse tipo. De qualquer modo, pode-se, por exemplo, argumentar sobre as possibilidades de ganhos de eficiência por meio de melhor administração, de parcimônia na adoção de tecnologias caras ou duplicadas, ou na eliminação de concorrências inadequadas entre os hospitais [esse último argumento foi estudado e refutado em Marinho e Façanha (2000)]. Mas tais argumentos estão além do escopo desta pesquisa, muito embora, sob certos aspectos, eles já estejam representados nas variáveis utilizadas no cálculo da eficiência técnica dos hospitais, com o uso da DEA. Além da variação de eficiência resultante da variação dos prazos de internação, existe, em cada hospital, um valor de eficiência que é constante e, portanto, independente dos prazos de permanência. A redução dos prazos médios de internação, não responderia, isoladamente, pela expansão dos níveis de eficiência do sistema formado pelos HUs. Existem efeitos fixos inerentes a cada um deles.

6 - CONSIDERAÇÕES FINAIS

Existem discrepâncias consideráveis de desempenho operacional entre os HUs. Essas discrepâncias, que se refletem nos níveis de eficiência técnica e na utilização dos mesmos, perpassam, principalmente, o nível regional. Poucas variações importantes puderam ser observadas ao longo do período estudado (1° semestre de 1998 até o 1° semestre de 2000).

O desempenho dos hospitais é pouco afetado pelo porte dos mesmos, tanto no que se refere aos níveis de eficiência técnica, quanto no que diz respeito aos indicadores de utilização. Vale assinalar que apenas nove hospitais têm mais de 200 leitos, e que o tamanho médio geral é de 144 leitos, não se configurando a freqüência muito grande de hospitais de porte muito elevado no sistema. Os hospitais com número médio de leitos maior do que 250 estão todos localizados nas regiões Sul e Sudeste.

A principal diferença entre os indicadores no nível regional ocorre nas taxas de rotatividade, que são bem menores nas regiões Nordeste e Sudeste do que nas demais regiões do país. A região Sudeste, usualmente citada como paradigmática em termos de medicina no Brasil, abriga HUs que operam com baixos níveis de eficiência, baixas taxas de ocupação, altos prazos médios de internação e baixas taxas de rotatividade. Deve-se fazer a ressalva de que o Sudeste possui, em geral, estatísticas de saúde de melhor qualidade que as demais regiões do país (com

exceção da região Sul). Também é usual a argumentação de que o Sudeste "importa" problemas graves de saúde das regiões menos favorecidas do país. Conforme já assinalado, não estão disponíveis, na base de dados referentes aos HUs, informações que permitam testar tais hipóteses.

Embora o presente estudo, por questões de limitação dos dados, analise apenas as clínicas médica e cirúrgica, pode-se observar, de modo geral, no banco de dados relativos aos HUs, que os hospitais universitários federais operam com maiores taxas de ocupação, menores taxas de rotatividade e, principalmente, maiores prazos médios de permanência que os demais hospitais do SUS. Ainda que esse não seja um aspecto tratado neste trabalho, sabe-se que o fenômeno pode ser explicado, em princípio, pela maior severidade dos casos atendidos pelos HUs. A clínica médica tem maiores taxas de ocupação, menor taxa de rotatividade e maior prazo médio de internação do que a clínica cirúrgica em todas as regiões do país. Algumas razões podem ser arroladas na explicação desse fenômeno. Ao lado de questões de ordem sanitária, incluindo-se os maiores riscos de infecção hospitalar nas cirurgias, o que recomenda menores taxas de ocupação e maior brevidade nas internações, existem as razões puramente médicas, relacionadas com o fato de que morbidades crônicas demandam, com maior probabilidade, tratamento clínico do que cirúrgico. Uma outra razão, de natureza sociológica, reside na presença mais intensa de motivações assistencialistas na clínica médica, onde os argumentos para acolhimento de pessoas com carências de todos os tipos podem ser melhor justificadas do que na clínica cirúrgica.

A eficiência técnica dos HUs varia de modo inverso ao prazo médio de internação: cada um deles mantém certo nível fixo de eficiência que independe dos prazos de internação nos mesmos. Os possíveis ganhos de eficiência oriundos da administração desses prazos seriam, portanto, limitados.

Um desenvolvimento desejável do presente trabalho seria o esclarecimento do perfil geral de financiamento dos HUs. Os resultados até então obtidos indicam possibilidades não-desprezíveis de conexões relevantes entre os modelos de financiamento dos HUs e os níveis de eficiência dos mesmos, com desdobramentos importantes sobre a atenção dispensada aos pacientes internados nesses hospitais.

Um outro exercício e resultado fornecido pela DEA é o que indica, para as DMUs não-eficientes, quais ajustes deveriam ser administrados em cada um dos *inputs* e em cada um dos *outputs* considerados, a partir da identificação e comparação de valores observados e efetivos com os valores eficientes, denominados *targets*, entendendo-se por valores eficientes os valores que permitiriam às DMUs virem a se situar na fronteira de eficiência. Calculou-se a relação entre os valores ótimos e os valores observados em cada variável nos HUs nos dois modelos ao longo dos anos (ver a Tabela A.1, no Apêndice). As únicas variáveis cujas relações estão bem ajustadas são o número de salas ativadas de ambulatório, emergência e cirurgias (*SALAS*) e o número total de leitos hospitalares ativos e de leitos de UTI adultos ativos (LEITOS), o que indica uma capacidade física operacional bem

dimensionada. Deve-se observar, entretanto, que a área construída total (ACONSTOT) está superdimensionada em aproximadamente 31%.

APÊNDICE

Tabela A.1
Valores Observados (Nome de Variável_A), Valores Ótimos (Nome de Variável_T) e Razão Valores Observados / Valores Ótimos (Nome de Variável)

Variáveis	ACONSTOT_A	ACONSTOT_T	ACONSTOT	SALAS_A	SALAS_T	SALAS
Total	5.658.745,80	4.318.080,10	1,31	21.942	21.845	1,00
Variáveis	LEITOS_A	LEITOS_T	LEITOS	TOTMEDIC_A	TOTMEDIC_T	TOTMEDIC
Total	52.439	50.582	1,04	25.829	20.877	1,24
Variáveis	TOTENFER_A	TOTENFER_T	TOTENFER	TOTDOCEN_A	TOTDOCEN_T	TOTDOCEN
Total	13.602	10.724	1,27	19.980	17.729	1,13
Variáveis	TOTSUSRE_A	TOTSUSRE_T	TOTSUSRE	INVINFHO_A	INVINFHO_T	INVINFHO
Total	1.217.539.234,50	1.079.657.892,20	1,13	241,7	872,9	0,28
Variáveis	TOTEXAME_A	TOTEXAME_T	TOTEXAME	TOTGECIR_A	TOTGECIR_T	TOTGECIR
Total	7.444.552	9.025.279	0,82	1.245.488	1.894.431	0,66
Variáveis	TOTCONSU_A	TOTCONSU_T	TOTCONSU	TOTINTER_A	TOTINTER_T	TOTINTER
Total	27.424.928,00	34.014.485,00	0,81	958.118	1.164.566	0,82
Variáveis	TOTGEALT_A	TOTGEALT_T	TOTGEALT	INVTGOBI_A	INVTGOBI_T	INVTGOBI
Total	883.936	1.107.818	0,80	11	54,8	0,20
Variáveis	RESIDENT_A	RESIDENT_T	RESIDENT			
Total	17.654	21.259	0,83			

Tabela A.2 Sigla, Região, Unidade da Federação, Nome e Instituição de Ensino Superior de Origem dos HUs

Sigla	UF	Hospitais	Instituição Federal de Ensino Superior
Norte			
HGVAM	AM	HU Getúlio Vargas	Universidade do Amazonas
HBFPA		HU Betina Ferro de Souza	Universidade Federal do Pará
HJBPA	PA	HU João de Barros Barreto	Universidade Federal do Pará
Nordeste			
HUAL	AL	Hospital Universitário	Universidade Federal de Alagoas
HESBA	BA	HU Prof. Edgard Santos	Universidade Federal da Bahia
CPHBA	BA	Centro Pediátrico Hosannah de Oliveira	Universidade Federal da Bahia
MCOBA	BA	Maternidade Climério de Oliveira	Universidade Federal da Bahia
HWCCE	CE	HU Walter Cantídio	Universidade Federal do Ceará
MACCE	CE	Maternidade Escola Assis Chateaubriand	Universidade Federal do Ceará
HUMA	MA	Hospital Universitário	Universidade Federal do Maranhão
HLWPB	PB	HU Lauro Wanderley	Universidade Federal da Paraíba
HACPB	PB	HU Alcides Carneiro	Universidade Federal da Paraíba
HCPE	PE	Hospital das Clínicas	Universidade Federal de Pernambuco
HABRN	RN	HU Ana Bezerra	Universidade Federal do Rio Grande do Norte
MJCRN	RN	Maternidade Escola Januário Cicco	Universidade Federal do Rio Grande do Norte
HOLRN	RN	HU Onofre Lopes	Universidade Federal do Rio Grande do Norte
HPRN	RN	Hospital de Pediatria	Universidade Federal do Rio Grande do Norte
MHFSE	SE	Maternidade Hildete Falcão	Universidade Federal de Sergipe
HUSE Sudeste	SE	Hospital Universitário	Universidade Federal de Sergipe
HAMES	ES	HU Antonio de Moraes	Universidade Federal do Espírito Santo
HEMG		Hospital Escola	Faculdade de Medicina do Triângulo Mineiro
HCUMG	MG	Hospital de Clínicas	Universidade Federal de Uberlândia
HCMG		Hospital de Clínicas	Universidade Federal de Minas Gerais
HUMG		Hospital Universitário	Universidade Federal de Juiz de Fora
HAPRJ		HU Antonio Pedro	Universidade Federal Fluminense
IMGRJ	RJ	Instituto de Puer. Ped. Martagão Gesteira	Universidade Federal do Rio de Janeiro
HFARJ	RJ	Hospital Escola São Francisco de Assis	Universidade Federal do Rio de Janeiro
CFFRJ		Clementino Fraga Filho	Universidade Federal do Rio de Janeiro
IGRJ	RJ	Instituto de Ginecologia	Universidade Federal do Rio de Janeiro
MERJ	RJ	Maternidade Escola	Universidade Federal do Rio de Janeiro
IDCRJ	RJ	Instituto de Neurologia Deolindo Couto	Universidade Federal do Rio de Janeiro
IDTRJ	RJ	Instituto de Doenças do Tórax	Universidade Federal do Rio de Janeiro
Sudeste		-	
IPRJ	RJ	Instituto de Psiquiatria	Universidade Federal do Rio de Janeiro
GGRJ	RJ	Gaffrée e Guinle	Universidade do Rio de Janeiro
HSP	SP	Hospital São Paulo	Universidade Federal de Sao Paulo

(continua)

(continuação)

Sigla	UF	Hospitais	Instituição Federal de Ensino Superior
Sul			
HCPR	PR	Hospital de Clínicas	Universidade Federal do Paraná
HCJRS	RS	HU Dr. Miguel Riet Correa Júnior	Universidade do Rio Grande
HPARS	RS	Hospital de Clínicas de Porto Alegre	Universidade do Rio Grande
HEPRS	RS	Hospital Escola	Universidade Federal de Pelotas
HURS	RS	Hospital Universitário	Universidade Federal de Santa Maria
HUSC	SC	Hospital Universitário	Universidade Federal de Santa Catarina
Centro-Oest	e		
HUDF	DF	Hospital Universitário	Universidade de Brasília
HCGO	GO	Hospital das Clínicas	Universidade Federal de Goiás
HAPMS	MS	HU Maria Aparecida Pedrossian	Universidade Federal de Mato Grosso Sul
HJMMT	MT	HU Júlio Müller	Universidade Federal de Mato Grosso

BIBLIOGRAFIA

- ARNOULD, R., BERTRAND, M., HALLOCK, K. *National Bureau of Economic Research* (*NBER*). Sep. 2000 (Working Paper Series, 7.924).
- CHARNES, A., COOPER, W. W. Programming with linear fractional functionals. *Naval Research Logistic Quarterly*, v. 9, n. 3,4, p. 181-185, 1962.
- CHARNES, A., COOPER, W. W., RHODES, E. Measuring efficiency of the decision making units. *European Journal of Operational Research*, v. 2, n. 6, p. 429-444, 1978.
- CHILINGERIAN, J. A. Exploring why some phisicians' hospital practices are more efficient: taking DEA inside the hospital. In: CHARNES, A., COOPER, W. W., LEWIN, A. Y., SEIFORD, L. M. (eds.). *Data envelopment analysis*. London: Kluwer Academic Publishers, 1994.
- DRANOVE, D., LUDWICK, R. Competition and pricing by non-profit hospitals: a reassesment of link's analysis. *Journal of Health Economics*, v. 18, p. 87-98, 1999.
- DUGAN, M. Hospital market structure and the behavior of not-for-profit hospitals: evidence from responses to California's disproportionate share programm. National Bureau of Economic Research (NBER), Oct. 2000 (Working Paper Series, 7.966).
- ELDENBURG, L., HERMALIN, B. E., WEISBACH, M. S., WOSISNSKA, M. *Hospital governance, performance objectives, and organizational form.* National Bureau of Economic Research (NBER), Apr. 2001 (Working Paper Series, 8.201).
- FARE, R., GROSSKOPF, S., VALDMANIS, V. Capacity, competition and efficiency in hospitals: a nonparametric approach. *The Journal of Productivity Analysis*, v. 1, p. 123-138, 1989.

- FERRIER, G. D., VALDMANIS, V. Rural hospital performance and its correlates. *The Journal of Productivity Analysis*, v. 7, p. 63-80, 1996.
- FISHER, E. S. What is a hospital ? Effective Clinical Practice, Editorial, May/June 1999.
- FORD, J. M., KASERMAN, D. L. Ownership structure and the quality of medical care: evidence from the dialysis industry. *Journal of Economic Behavior & Organization*, v. 43, n. 3, p. 279-293, Nov. 2000.
- GREENE, W. H. Econometric Analysis. 3 rd ed. London: Prentice-Hall International, 1997.
- HILLIER, F. S., LIEBERMAN, G. J. *Introduction to operations research*. 6th ed. International Editions, McGraw-Hill, Inc. London, 1995.
- KEELER, E. B., MELNICK, G., ZWANZIGER, J. The changing effects of competition on non-profit hospital pricing behavior. *Journal of Health Economics*, v. 18, p. 69-96, 1999.
- MARINHO, A. Avaliação organizacional de uma universidade pública: uma abordagem nãoparamétrica da Universidade Federal do Rio de Janeiro (UFRJ). Rio de Janeiro: EPGE/FGV, 1996 (Dissertação de Doutorado).
- . Estudo de eficiência em hospitais públicos e privados com a elaboração de *rankings. Revista de Administração Pública (RAP)*, v. 32, n. 6, p. 145-158, nov./dez., 1998.
- MARINHO, A., FAÇANHA, L. O. Hospitais universitários: mecanismos de coordenação e avaliação comparativa de eficiência técnica. *Ensaio*, v. 6, n. 19, p. 201-235, abr./jun. 1998.
- ————. Hospitais universitários: avaliação comparativa de eficiência técnica. *Economia Aplicada*, v. 4, n. 2, p. 315-349, abr./jun. 2000.
- MARINHO, A., MORENO, A. B., CAVALINI, L. T. Avaliação descritiva da rede hospitalar do Sistema Único de Saúde (SUS). Instituto de Pesquisa Econômica Aplicada (IPEA), 2001, mimeo.
- McCLELLAN, M. Hospital reimbursement incentives: an empirical analysis. *Journal of Economics & Management Strategy*, v. 6, n. 1, p. 91-128, Spring 1997.
- SHLEIFER, A. A theory of yardstick competition. *Rand Journal of Economics*, v. 16, n. 3, Autumn 1985.
- SLOAN, F., PICONE, G. A., TAYLOR JR., D. H., CHOU, S. *Hospital ownership and cost and quality of care: is there a dime's worth of difference?* National Bureau of Economic Research (NBER), Aug. 1998 (Working Paper Series, 6.706).
- THANASSOULIS, E. A comparision of regression analysis and data envelopment analysis as alternative methods for performance assessments. *Journal of Operational Research Society*, v. 44, n. 11, p. 1.128-1.144, 1993.