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SINOPSE

Neste artigo são comparadas as habilidades preditivas de modelos lineares e não-
lineares, com quebras estruturais, para a taxa de crescimento do PIB do Brasil. São
estimados os modelos com mudança de regime markoviana propostos por Hamilton
(1989) e Lam (1990)   que generaliza o modelo de Hamilton   com dados
trimestrais de 1975:1 a 2000:2. Na estimação dos modelos são permitidas quebras
estruturais durante os Planos Collor I e II.

As probabilidades de recessão dos modelos são utilizadas para se analisar o ciclo
de negócios brasileiro. É examinada a capacidade de se prever a taxa de crescimento
do PIB fora da amostra e a habilidade preditiva dos dois modelos é comparada com a
de modelos lineares.

Os nossos resultados revelam que os modelos não-lineares são os que apresentam
o melhor desempenho preditivo e que a inclusão de quebras estruturais é importante
para se obter a representação do ciclo de negócios no Brasil.

ABSTRACT

This paper compares the forecasting performance of linear and nonlinear models
under the presence of structural breaks for the Brazilian real GDP growth. The
Markov switching models proposed by Hamilton (1989) and its generalized version
by Lam (1990) are applied to quarterly GDP from 1975:1 to 2000:2 allowing for
breaks at the Collor Plans.

The probabilities of recessions are used to analyze the Brazilian business cycle.
The ability of each model in forecasting out-of-sample the growth rates of GDP is
examined. The forecasting ability of the two models is also compared with linear
specifications.

We find that nonlinear models display the best forecasting performance and that
specifications including the presence of structural breaks are important in obtaining a
representation of the Brazilian business cycle.
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1  INTRODUCTION
The increasing global economic integration and intense volatility in emerging market
economies in recent years have re-emphasized the importance of forecasting
fundamentals in developing countries, and in particular, gauging the potential of
future economic recessions. Recently, the currency crisis in Argentina has raised
strong interest in the potential economic vulnerability of neighboring countries,
especially of its main trading partner, Brazil.

Nevertheless, the task of forecasting emerging market economies has proven to
be a special difficult one, given the great instability in these economies.  In particular,
models that do not take into account changes in the dynamics of these economies in
form of structural breaks may perform poorly in real time. This paper examines the
performance of several models in forecasting Brazilian output when structural breaks
are explicitly taken into account. First, we examine whether nonlinear time series
models produce short run and long run forecasts that improve upon linear models.
Second, we compare whether there are gains in endogenously modeling structural
breaks to produce out-of-sample forecasts. We conduct an examination of various
forecasts at the one, two, four and eight-quarter horizons for the rate of growth of
real Brazilian GDP. The study partially simulates real time prediction since all
forecasts are based solely on revised data through the date of each forecast.

Linear models have been widely applied in earlier forecasting literature.
However, these models have been used to generate a forecast of the rate of growth of
output rather than to forecast a nonlinear event such as a turning point, that is, the
beginning or end of an economic recession.  Generally the filters used to extract
turning point forecasts from a linear model require the use of ex post data. This paper
uses two classes of Markov switching models, which directly provide real time
turning point forecasts in addition to predictions of GDP growth.

More recently, a number of studies has examined the forecasting performance of
nonlinear and linear models, including Weigand and Gershenfeld (1994), Hess and
Iwata (1997), Stock and Watson (1998), and Camacho and Perez-Quiros (2000),
among others. These authors detect nonlinearities in several macroeconomic time
series with conflicting results with respect to forecasting performance of the models.
As Camacho and Perez-Quiros (2000) conclude for the U.S. economy, we find that
nonlinear switching specifications that take into account structural breaks in the
Brazilian economy yield better forecasts than linear models of GDP growth,
especially at longer horizons. In addition, nonlinear models replicate more accurately
Brazilian business cycle features.

The remainder of this paper is organized as follows. The forecasting models are
presented in Section 2. The algorithm used to estimate the Markov switching models
and their differences are described in the Appendix. Section 3 examines the major
structural break in the Brazilian economy due to Collor stabilization Plan
implemented in 1990-1992. The results are presented and discussed in Section 4,
and conclusions are summarized in Section 5.
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2  THE MODELS AND THE ESTIMATION METHODS

2.1  HAMILTON’S MARKOV SWITCHING MODEL (MS)

Hamilton (1989) models the log of GDP, yt, as divided into a trend, nt, and a
Gaussian cyclical component, zt:

yt = nt + zt (1)

nt = nt –1 + α0(1 – St) + α1 St (2)

φ(L) (1 – L)zt  = εt (3)

where εt ~ iid N (0, σ2) and εt is independent on nt + k ∀ k, and St is a latent first-order
Markov chain. The drift switches between two states: it takes the value of α0 when
the economy is in an expansion (st = 0) and α1 when the economy is in a recession
(st = 1). The changes in regimes are ruled by the transition probabilities pij = prob [st =
= j| st – 1 = i] where 1

0 1,  , 0,1.j ij
p i j= = =∑

In this model both nt and zt display unit roots and the roots of φ(L) = 0 lie
outside the unity circle. Hence, the cyclical component follows a zero mean
ARIMA(r, 1, 0) process:

zt – zt – 1 = φ1(zt – 1 – zt – 2) + φ2 (zt – 2 – zt – 3) + ... + φr (zt – r – zt – r – 1) + εt (4)

Taking the first difference of (1) we get:

∆yt = µst + φ1(zt – 1 – zt – 2) + φ2(zt – 2 – zt – 3) + ... + φr (zt – r – zt – r – 1) + εt (5)

where ∆ = 1 – L and µst = α0(1 – St) + α1St.

2.2  LAM’S MARKOV SWITCHING MODEL (MSG)

Lam (1990) suggests a modification of Hamilton’s model that has important
implications for the characterization of output trend and cycle. In particular, Lam
decomposes the log of GDP into a trend nt and a cyclical component zt , where only
the trend displays a unit root:

yt = nt + zt (6)

nt = nt – 1 + α0(1 – St) + α1St (7)

That is, the autoregressive process zt is now given by:

φ (L)zt = εt (8)

where εt ~ iid N(0, σ2).  Taking the first difference of (6) we get:

∆yt = µst + zt – zt – 1 (9)
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where µst = α0(1 – St) + α1St. This model allows for both temporary and permanent
shocks: the roots of φ(L)=0 are outside the unity circle, which implies that zt can be
interpreted as the transitory deviations of yt from its long run trend nt.  Therefore,
this model captures structural changes in the trend of the Brazilian GDP. On the
other hand, since in Hamilton’s model both the cyclical component and the trend
present unit roots, all shocks to output are permanent.

Both models require different nonlinear filters to be estimated. A detailed
description of Hamilton and Lam filter can be found in Hamilton (1989) and in
Lam (1990), respectively. The filter used to estimate Lam’s model involves
substantial more computation than Hamilton’s algorithm for two reasons. First, in
the calculation of the error, the states for each observation include all the history of
the Markov process, which is treated as an additional variable.  Second, the initial
value of the autoregressive component is treated as an additional free parameter to be
estimated. The Appendix presents a brief description of both filters.

3  STRUCTURAL BREAKS AND INTERVENTION
Markov switching models have been extensively used to represent cyclical changes or
structural breaks in the economy. Hamilton (1989) applied this model to the
quarterly change in the log of U.S. real GNP from 1952:2 to 1984:4, assuming that
the cyclical component follows an AR(4) process. The estimated Markov states
obtained were closely associated with the U.S. expansions and recessions as dated by
the NBER.

More recently, McConnell and Perez-Quiros (2000) have found evidence of a
structural break in the volatility of U.S. growth towards stabilization in the first
quarter of 1984. They show that one implication of the break is that the smoothed
probabilities miss the 1990 U.S. recession when more recent data are used. There are
different ways to handle the problem of structural breaks. McConnell and Perez-
Quiros suggest augmenting Hamilton’s model by allowing the residual variance to
switch between two regimes, and letting the mean growth rate vary depending on the
state of the variance.1 The resulting estimated smoothed probabilities of the
augmented model capture the 1990-1991 recession.  Notice that Hamilton’s model
decomposes the log of GDP into the sum of a trend and a cycle, each of which
presents unit roots processes that are not identifiable from each other. Thus, in the
presence of a structural break, both terms capture both the business cycle component
and the break jointly.2 McConnell and Perez-Quiros’ model identifies breaks in the
variance from breaks in the mean by allowing each to follow different and dependent
Markov processes. Thus, while the Markov chain for the variance captures the break
in 1984, the Markov states for the mean capture the business cycle component for
the full sample.

1. This amounts in estimating four mean growth rates: low growth under high and low volatility states, and high growth
under high and low volatility states.

2. The smoothed probabilities obtained from a model with switching variance and constant mean captures the break in
1984, while a model with switching mean and constant variance captures the business cycle phases up to the breakpoint
[see McConnell and Perez-Quiros (2000)].
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Lima and Domingues (2000) models the change in the log of Brazilian GDP as
a hidden Markov chain with an AR(4) component. Alternatively, Chauvet (2002a)
and (2002b) model the change in the log of Brazilian and U.S. GDP, respectively, as
a hidden Markov chain with no autoregressive component.  This specification
captures business cycle features of these economies regardless of the presence of
structural breaks in the mean or variance of output. Several authors such as
McConnell and Perez-Quiros (2000), Harding and Pagan (2001) or Albert and Chib
(1993), among others, have found the GDP growth in the U.S. and other countries
is better modeled as a low autoregressive process. In particular, Albert and Chib use
Bayesian methods to estimate Hamilton’s model and find that the best specification
for changes in GDP is an AR(0) process, as the autoregressive coefficients are not
statistically significant. This finding is perhaps due to the presence of structural
breaks in the stochastic process of GDP.

The Brazilian economy also displays several structural breaks.  In particular, the
series of stabilization plans and changes in policy regime in the last two decades
resulted in several breaks in the Brazilian GDP, especially in  the early 1990s due to
the Collor Plan. Figure 1 shows the Brazilian GDP3 around the period of
implementation of the Collor stabilization Plan. As it can be observed, the economy
faced a period of large swings for five quarters. Upon introduction of the plan in the
second quarter of 1990, GDP decreased at a quarterly average rate of –6.7%. In the
third quarter GDP experienced an abrupt increase of 6.8%, but in the following two
quarters it fell again by 1.4% and 4.9%, respectively. In the second quarter of 1992
the economy again underwent a large increase of 7.1%.

FIGURE 1

Brazilian GDP Growth and the Collor Plan
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These large pulse-breaks in the Brazilian economy cause estimation problems for
standard Markov switching models and the optimization routines frequently

3. The data on real Brazilian GDP were seasonally adjusted using the X-12 method.  The series was obtained from IPEA
database.
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converges to a local maximum.4 If the autoregressive part is not long enough, or if it
does not display a unit root, then the models and probabilities capture solely the
pulse breaks due to the Collor Plan. For example, when the MS specification with an
AR(1) [MS-AR(1)] or an AR(2) [MS-AR(2)] component and the MSG specification
with different autoregressive components [from MSG-AR(1) to MSG-AR(5)] are
applied to real Brazilian GDP growth, the filtered and smoothed probabilities of low
growth concentrate in the observations between 1990:I to 1991:II (Collor I and
Collor II Plans), as illustrated in Figures 2 [MS-AR(2)] and 3 [MSG-AR(3)]. That is,
without intervention both models capture solely the abrupt pulse breaks experienced
by the Brazilian economy during the Collor Plans instead of cyclical economic
expansions and contractions.

FIGURE 2

Filtered and Smoothed Probabilities of Recessions: MS-AR(2) Model without Intervention

MS Model without Intervention
Filtered Probabilities of Recession
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4. The estimation procedure was as follows: first, the MS model was estimated considering an AR(0). Second, the MLE
parameters from this model were used to initialize the estimation of the MS-AR(1). Next, the MLE parameters of the MS-
AR(1) were used to initialize the MS-AR(2) and so on. The MLE parameters of the MS models were then used to initialize
the MSG model.
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FIGURE 3

Filtered and Smoothed Probabilities of Recessions: MSG-AR(3) Model without
Intervention

MSG Model without Intervention

Filtered Probabilities of Recession
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The estimation results without i’ntervention of several autoregressive
specifications of MS and MSG models are reported in Tables 1 and 2. Notice that
these models were estimated allowing both mean and variance to switch regimes. The
specifications allowing only the mean to switch between states did not converge.5

Overall the estimates from Lam’s model were more stable as the number of lags
increased. On the other hand, Hamilton’s model presented instability with respect to
the parameters as the number of lags increased. This is not surprising since, as
mentioned before, for low order processes there is concentration of recession
probabilities during the Collor Plans.

Using the likelihood ratio test, we find that the best specifications without
intervention were an AR(4) process for the MS model [MS-AR(4)] and an AR(2)
process for the MSG model [MSG-AR(2)]. We have also tested the out-of-sample
forecasting performance of several Markov switching models, with autoregressive
components, comparing them with linear models and with the MS-AR(0) model.
Two linear models were estimated for comparison with the Markov switching
models: an AR(3) and an ARMA(1,1) model.6 All models were estimated from
1976:2 up to 1992:1, and then recursively re-estimated for each subsequent quarter
from 1992:2 until the last quarter of the sample, 2000:2 to generate the out-of-
sample forecasts.7 Table 3 shows the relative mean squared error (MSE) of a selected
group of alternative models for the 1992:2-2000:2 period [‘No Change,’8 AR(3),
ARMA(1,1), MS-AR(2), MS-AR(4) and MSG-AR(2)]. The relative mean squared
errors are computed with respect to three benchmark models: AR(3), ARMA(1,1)
and MS-AR(0). Table 3 also reports the heteroscedasticity and autocorrelation
consistent (HAC) standard errors of these relative MSE.9 The MS-AR(4) gives the
best short-run forecasts (1 to 2 steps ahead). The linear AR(3) model does better than
the other models for longer forecasts.

We introduce interventions in the models for two reasons. First, the Collor Plan
has engendered strong real effects in the economy, which influence the specification
of the MS and MSG models. Second, without explicitly modeling the breaks the
MSG model does not capture the Brazilian business cycle. As it is shown in the next
section, the probabilities from the models with interventions characterize recessions
and expansions rather than solely the Collor Plan, and increase the forecasting ability
of MS and MSG models.

5. The likelihood function increases as the probability of recessions converges to a very small value, capturing the break
instead of expansions and recessions in the Brazilian output.

6. The identification of the ARMA model was implemented using AIC and SBC criteria. In addition, given that structural
breaks generally lead to serial correlation in the residuals, Durbin-Watson test was used to test whether the residuals of
the selected model are white noise. The identification was implemented considering or not dummies for the period
between 1990.1 a 1991.2.

7. Appendix B shows how these forecasts were calculated. For the out-of-sample forecasts, the models were estimated
from 1976:2 up to 2000:2, and then were used to predict the annual rate of growth of GDP from 2000:3 to 2001:4.

8. The ‘No Change’ model refers to the random walk yt = yt - 1+ et,  et ~ WN (0, σ2).

9. There is an asymptotic justification for  this procedure in the case of  recursively estimated models, as explained in
West (1996).



TABLE 1

Hamilton’s Model (MS) under Different Specifications — No Intervention

AR(0) AR(0) AR(1) AR(0) AR(1) AR(2) AR(0) AR(1) AR(2) AR(3) AR(0) AR(1) AR(2) AR(3) AR(4) AR(0) AR(1) AR(2) AR(3) AR(4) AR(5)
Num. obs. 101 100 100 99 99 99 98 98 98 98 97 97 97 97 97 96 96 96 96 96 96

Log(L(θ)) 248.79 246.25 247.66 243.10 244.57 246.49 240.18 241.67 243.72 245.58 240.38 240.40 244.16 245.79 247.99 237.45 238.74 240.92 242.57 244.51 244.60
P00 0.928 0.928 0.986 0.928 0.985 0.986 0.923 0.985 0.986 0.839 0.927 0.924 0.793 0.817 0.787 0.924 0.985 0.986 0.643 0.782 0.780

(0.054) (0.056) (0.015) (0.059) (0.015) (0.014) (0.063) (0.016) (0.015) (0.104) (0.051) (0.053) (0.072) (0.066) (0.068) (0.053) (0.016) (0.015) (0.118) (0.070) (0.067)
P11 0.812 0.807 0.821 0.804 0.821 0.816 0.803 0.821 0.815 0.630 0.824 0.835 0.678 0.644 0.683 0.826 0.821 0.815 0.811 0.677 0.673

(0.141) (0.144) (0.158) (0.145) (0.158) (0.161) (0.144) (0.157) (0.161) (0.128) (0.132) (0.125) (0.149) (0.114) (0.111) (0.130) (0.157) (0.161) (0.070) (0.109) (0.107)
µ0 0.012 0.012 0.008 0.011 0.008 0.008 0.011 0.008 0.008 0.015 0.011 0.012 0.017 0.016 0.018 0.012 0.008 0.008 0.016 0.018 0.018

(0.003) (0.003) (0.002) (0.003) (0.002) (0.002) (0.003) (0.002) (0.002) (0.003) (0.003) (0.003) (0.002) (0.002) (0.001) (0.003) (0.002) (0.002) (0.002) (0.001) (0.001)
µ1 –0.004 –0.004 0.00004 –0.004 0.00005 –0.007 –0.003 0.0002 –0.006 –0.011 –0.004 –0.003 –0.009 –0.011 –0.008 –0.004 0.000 –0.007 –0.010 –0.009 –0.009

(0.008) (0.008) (0.024) (0.008) (0.023) (0.022) (0.008) (0.023) (0.022) (0.009) (0.007) (0.007) (0.006) (0.005) (0.004) (0.007) (0.024) (0.022) (0.005) (0.004) (0.003)
σ0 0.015 0.015 0.018 0.015 0.018 0.017 0.015 0.018 0.017 0.012 0.014 0.014 0.010 0.011 0.009 0.014 0.017 0.017 0.011 0.009 0.009

(0.002) (0.002) (0.001) (0.003) (0.001) (0.001) (0.003) (0.001) (0.001) (0.002) (0.002) (0.002) (0.002) (0.001) (0.002) (0.002) (0.001) (0.001) (0.001) (0.002) (0.001)
σ1 0.033 0.033 0.054 0.033 0.054 0.055 0.034 0.054 0.055 0.028 0.032 0.032 0.024 0.025 0.022 0.032 0.055 0.056 0.025 0.022 0.022

(0.007) (0.007) (0.017) (0.008) (0.017) (0.017) (0.008) (0.016) (0.017) (0.006) (0.006) (0.006) (0.004) (0.004) (0.004) (0.006) (0.017) (0.017) (0.004) (0.003) (0.003)
φ1 - - 0.178 - 0.177 0.200 - 0.176 0.199 –0.063 - –0.028 –0.387 –0.244 –0.330 - 0.187 0.209 0.190 –0.325 0.375

 (0.101)  (0.102) (0.101) - (0.102) (0.101) (0.179)  (0.134) (0.219) (0.163) (0.251)  (0.103) (0.101) (0.172) (0.191) (0.196)
φ2 - - - - - –0.189 - - –0.197 –0.222 - - –0.447 –0.359 –0.534 - - –0.199 0.327 –0.535 0.546

(0.095) - (0.095) (0.159) (0.168) (0.126) (0.219) (0.093) (0.126) (0.156) (0.149)
φ3 - - - - - - - - - 0.385 - - - 0.237 0.001 - - - 0.272 0.013 0.057

- - (0.153) (0.125) (0.279) (0.130) (0.168) (0.212)
φ4 - - - - - - - - - - - - - - –0.244 - - - - –0.243 0.276

- - (0.142) (0.106) (0.131)
φ5 - - - - - - - - - - - - - - - - - - - - 0.072

(0.171)
Theil-U 0.710 0.714 0.669 0.714 0.668 0.635 0.715 0.667 0.633 0.420 0.709 0.573 0.464 0.421 0.385 0.711 0.668 0.635 0.409 0.387 0.362

Note: Standard deviation in parenthesis.



TABLE 2

Lam’s Model (MSG) under Different Specifications — No Intervention

AR(1) AR(1) AR(2) AR(1) AR(2) AR(3) AR(1) AR(2) AR(3) AR(4) AR(1) AR(2) AR(3) AR(4) AR(5)

Obs. 100 99 99 98 98 98 97 97 97 97 96 96 96 96 96

Log(L(θ)) 250.529 247.623 250.359 244.559 247.287 248.378 243.049 245.551 246.817 247.851 240.334 243.579 244.741 245.956 246.641
P00 0.986 0.986 0.988 0.986 0.988 0.988 0.986 0.988 0.988 0.988 0.933 0.988 0.988 0.988 0.988

(0.015) (0.015) (0.012) (0.016) (0.012) (0.012) (0.015) (0.012) (0.012) (0.012) (0.050) (0.013) (0.012) (0.012) (0.013)
P11 0.818 0.817 0.816 0.816 0.815 0.812 0.818 0.816 0.813 0.811 0.826 0.817 0.814 0.812 0.760

(0.165) (0.166) (0.164) (0.166) (0.164) (0.165) (0.164) (0.163) (0.164) (0.168) (0.127) (0.163) (0.164) (0.167) (0.218)
µ0 0.007 0.006 0.007 0.006 0.007 0.007 0.007 0.007 0.007 0.007 0.009 0.007 0.007 0.007 0.007

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.003) (0.001) (0.001) (0.001) (0.001)
µ1 –0.001 –0.001 –0.004 –0.001 –0.004 –0.004 –0.002 –0.005 –0.006 –0.006 –0.001 –0.004 –0.004 –0.004 –0.005

(0.010) (0.009) (0.010) (0.009) (0.010) (0.009) (0.010) (0.011) (0.010) (0.010) (0.004) (0.010) (0.010) (0.010) (0.012)
σ0 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.016 0.016 0.014 0.017 0.016 0.016 0.016

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001)
σ1 0.049 0.048 0.056 0.048 0.056 0.056 0.049 0.056 0.056 0.054 0.032 0.056 0.057 0.054 0.057

(0.015) (0.015) (0.018) (0.015) (0.018) (0.017) (0.015) (0.018) (0.017) (0.017) (0.007) (0.018) (0.017) (0.017) (0.020)
φ1 0.878 0.872 1.076 0.869 1.073 1.102 0.887 1.078 1.110 1.122 0.889 1.107 1.136 1.152 1.177

(0.046) (0.047) (0.098) (0.048) (0.098) (0.100) (0.049) (0.097) (0.098) (0.099) (0.056) (0.099) (0.100) (0.101) (0.102)
φ2 - - –0.228 - –0.229 –0.380 - –0.217 –0.376 –0.418 - –0.256 –0.407 –0.455 –0.529

(0.094) (0.095) (0.138) (0.094) (0.136) (0.138) (0.097) (0.138) (0.140) (0.148)
φ3 - - - - - 0.138 - - 0.147 0.308 - - 0.141 0.312 0.441

(0.09) (0.09) (0.15) (0.09) (0.15) (0.16)
φ4 - - - - - - - - - –0.146 - - - –0.155 –0.349

(0.107) (0.105) (0.158)
φ5 - - - - - - - - - - - - - - 0.125

(0.094)
Z0 –0.159 –0.163 –0.140 –0.164 –0.142 –0.151 –0.151 –0.132 –0.140 –0.131 –0.162 –0.143 –0.151 –0.142 –0.154

(0.050) (0.049) (0.037) 0.048 (0.037) (0.042) 0.054 (0.040) (0.047) (0.042) (0.082) (0.039) (0.044) (0.040) (0.047)
Theil-U 0.693 0.692 0.694 0.692 0.694 0.685 0.695 0.696 0.687 0.669 0.691 0.697 0.689 0.669 0.656

Note: Standard deviation in parenthesis.



TABLE 3

Linear and Nonlinear Models: Out-of-Sample Forecasting Performance without Intervention

Steps
RMSE

Benchmark
model

No change AR(3) ARMA(1,1) MS-AR(0) MS-AR(2) MS-AR(4) MSG-AR(2)

AR(3) MSE of each model relative to the MSE of the AR(3) model 

1 0.01586 1.920 (0.393) - - 0.956 (0.043) 1.172 (0.069) 1.001 (0.061) 0.932 (0.085) 1.085 (0.044)
2 0.01597 3.088 (1.664) - - 0.994 (0.023) 1.271 (0.095) 1.054 (0.028) 0.967 (0.035) 1.170 (0.089)
3 0.01687 1.836 (0.677) - - 1.001 (0.026) 1.058 (0.019) 1.006 (0.051) 1.082 (0.053) 1.112 (0.068)
4 0.01669 1.960 (0.410) - - 1.060 (0.018) 1.119 (0.040) 1.049 (0.013) 1.182 (0.104) 1.117 (0.107)
5 0.01671 2.658 (0.888) - - 1.042 (0.021) 1.110 (0.038) 1.051 (0.016) 1.097 (0.046) 1.066 (0.062)
6 0.01695 1.944 (0.456) - - 1.003 (0.006) 1.024 (0.016) 1.011 (0.006) 1.102 (0.054) 1.070 (0.051)
7 0.01698 1.291 (0.228) - - 0.998 (0.005) 1.025 (0.014) 1.004 (0.006) 1.105 (0.046) 1.083 (0.072)
8 0.01746 2.255 (0.505) - - 1.003 (0.005) 1.070 (0.038) 1.003 (0.008) 1.029 (0.014) 1.032 (0.048)

ARMA(1,1) MSE of each model relative to the MSE of the ARMA(1,1) model 

1 0.01550 2.009 (0.446) 1.047 (0.047) - - 1.227 (0.074) 1.047 (0.026) 0.975 (0.075) 1.136 (0.063)
2 0.01592 3.108 (1.700) 1.006 (0.024) - - 1.279 (0.112) 1.060 (0.011) 0.973 (0.039) 1.177 (0.108)
3 0.01689 1.834 (0.695) 0.999 (0.026) - - 1.056 (0.027) 1.005 (0.028) 1.080 (0.075) 1.110 (0.086)
4 0.01718 1.849 (0.353) 0.943 (0.016) - - 1.055 (0.025) 0.989 (0.007) 1.115 (0.084) 1.054 (0.087)
5 0.01707 2.550 (0.806) 0.959 (0.020) - - 1.065 (0.033) 1.008 (0.012) 1.053 (0.047) 1.023 (0.064)
6 0.01697 1.938 (0.456) 0.997 (0.006) - - 1.021 (0.019) 1.008 (0.005) 1.099 (0.058) 1.067 (0.054)
7 0.01697 1.294 (0.227) 1.002 (0.005) - - 1.028 (0.015) 1.007 (0.003) 1.107 (0.048) 1.086 (0.077)
8 0.01749 2.248 (0.501) 0.997 (0.005) - - 1.067 (0.042) 1.000 (0.004) 1.025 (0.011) 1.029 (0.052)

MS-AR(0)  MSE of each model relative to the MSE of the MS-AR(0) model

1 0.01717 1.638 (0.252) 0.853 (0.050) 0.815 (0.049) - - 0.854 (0.045) 0.795 (0.092) 0.926 (0.043)
2 0.01801 2.430 (0.973) 0.787 (0.059) 0.782 (0.068) - - 0.829 (0.067) 0.761 (0.076) 0.920 (0.055)
3 0.01736 1.736 (0.609) 0.945 (0.017) 0.947 (0.024) - - 0.951 (0.043) 1.022 (0.055) 1.051 (0.071)
4 0.01765 1.752 (0.307) 0.894 (0.032) 0.948 (0.022) - - 0.937 (0.023) 1.057 (0.062) 0.998 (0.071)
5 0.01761 2.394 (0.695) 0.901 (0.031) 0.939 (0.029) - - 0.947 (0.022) 0.988 (0.019) 0.960 (0.042)
6 0.01715 1.899 (0.426) 0.977 (0.015) 0.980 (0.019) - - 0.987 (0.016) 1.076 (0.043) 1.046 (0.048)
7 0.01720 1.259 (0.221) 0.975 (0.013) 0.973 (0.015) - - 0.980 (0.016) 1.078 (0.042) 1.056 (0.064)
8 0.01807 2.107 (0.434) 0.934 (0.033) 0.937 (0.037) - - 0.937 (0.039) 0.961 (0.039) 0.964 (0.024)

Note:  The models were estimated from 1975:2 up to 1992:1, and then recursively re-estimated out-of-sample for each subsequent quarter from 1992:2 until the last quarter of the sample, 2000:2.  The entries from the second to the last column are the mean squared forecast error (MSE) of the model
described in the first line of the table relative to the MSE of the Benchmark model. The standard errors, shown in parenthesis, are HAC robust and were estimated using a Bartlett kernel with the number of lags, for each step-ahead, equal to the number of computed forecast errors.
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We estimate the models under several alternative interventions in order to
overcome the problem of structural breaks in the Brazilian economy. In particular,
we estimate alternative specifications in which the drift parameters are allowed to take
different values during the Collor I and II stabilization Plans. We also estimate the
model treating the observations of Collor I and II Plans as outliers.

Models with Intervention

When the models are estimated without intervention, there is a tendency for the
filtered probabilities to concentrate around the 1990:1-1991:2 structural break [for
MS-AR(1) and MS-AR(2) models and all estimated MSG specifications]. These
results suggest that intervention should be implemented in the 1990:1-1991:2
period. The models were estimated under alternative interventions in the drift term
or treating the observations for certain periods as outliers. We report the results for
only the two interventions that were successful in characterizing the Brazilian
business cycle.10 The first intervention is modeled as the sum of an additional
parameter δi during the Collor Plan (intervention type 1):

µst = µ0 (1 – St) + µ1St + δi        for  i = 1990:1, …, 1991:2

µst = µ0 (1 – St) + µ1St          otherwise

The second intervention considers the period of the Collor Plans (1990.1 to
1991.2) as outliers (intervention type 2). One advantage of this method is that the
intervention capturing the break is not restricted to be only in the trend component.

4  RESULTS
For the models with intervention types 1 and 2, there is no convergence problem and
the regime switching parameters are significant at all levels. Compared with the
alternative specifications, these interventions are the ones that yield the most
reasonable results. The results for the best models are discussed below.

4.1 RESULTS FOR SELECTED MODELS

Based on the likelihood ratio test, Theil-U statistic and the filtered probabilities, the
models selected as presenting the best fit to the Brazilian business cycle are a MS-
AR(2) and a MSG-AR(2) with intervention of type 1 and 2. Table 4 shows the
results for MS and MSG models for the intervention of type 1, while Table 5 reports
the results for intervention type 2. Since the results are similar, for both
interventions, we choose to report the ones for intervention type 2.

10. The results for the other interventions are available from the authors upon request.



TABLE 4

Hamilton´s Model (MS) and Lam´s Models (MSG) under Different Specifications and Intervention Type 1

Hamilton's model (MS) Lam's model (MSG)

Num. obs.
AR(0)
101

AR(0)
100

AR(1)
100

AR(0)
99

AR(1)
99

AR(2)
99

AR(0)
98

AR(1)
98

AR(2)
98

AR(3)
98

AR(1)
100

AR(1)
99

AR(2)
99

AR(1)
98

AR(2)
98

AR(3)
98

Log(L(θ)) 271.113 268.444 268.447 265.130 265.139 269.050 261.864 261.915 265.775 266.401 274.177 272.058 277.074 270.144 275.604 277.066
P00 0.875 0.876 0.877 0.874 0.875 0.853 0.874 0.876 0.854 0.851 0.853 0.853 0.835 0.830 0.833 0.834

(0.060) (0.060) (0.061) (0.062) (0.064) (0.047) (0.063) (0.068) (0.048) (0.052) (0.044) (0.044) (0.045) (0.048) (0.045) (0.045)
P11 0.503 0.500 0.498 0.499 0.496 0.571 0.498 0.486 0.570 0.521 0.567 0.572 0.552 0.540 0.552 0.545

(0.143) (0.145) (0.147) (0.145) (0.151) (0.107) (0.147) (0.159) (0.109) (0.122) (0.109) (0.107) (0.102) (0.108) (0.102) (0.101)
µ0 0.015 0.015 0.015 0.015 0.015 0.017 0.015 0.014 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.017

(0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.002) (0.003) (0.001) (0.002) (0.0005) (0.0005) (0.0004) (0.0005) (0.0004) (0.0004)
µ1 –0.016 –0.016 –0.016 –0.016 –0.016 –0.014 –0.016 –0.016 –0.014 –0.015 –0.015 –0.015 –0.015 –0.015 –0.015 –0.015

(0.004) (0.004) (0.005) (0.005) (0.005) (0.002) (0.005) (0.005) (0.002) (0.003) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
σ0 0.013 0.013 0.013 0.013 0.013 0.011 0.013 0.013 0.011 0.011 0.010 0.010 0.009 0.010 0.009 0.009

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
φ1 - - 0.012 - 0.021 –0.201 - 0.053 –0.184 0.140 0.424 0.391 0.555 0.405 0.595 0.603

 (0.110)  (0.176) (0.147)  (0.172) (0.165) (0.233) (0.107) (0.107) (0.108) (0.099) (0.116) (0.106)
φ2 - - - - - –0.456 - - –0.457 –0.358 - - –0.337 - –0.327 –0.437

(0.127) (0.133) (0.142)  (0.090)  (0.092) (0.108)
φ3 - - - - - - - - - 0.260 - - - - - 0.189

(0.166) (0.102)
Intervention 1 –0.042 –0.042 –0.041 –0.042 –0.041 –0.050 –0.041 –0.041 –0.049 –0.049 –0.046 –0.045 –0.041 –0.045 –0.041 –0.043

(0.013) (0.013) (0.013) (0.013) (0.014) (0.012) (0.013) (0.014) (0.012) (0.012) (0.011) (0.010) (0.009) (0.010) (0.009) (0.009)
Intervention 2 –0.100 –0.100 –0.100 –0.100 –0.100 –0.109 –0.100 –0.099 –0.109 –0.107 –0.103 –0.102 –0.106 –0.102 –0.106 –0.107

(0.013) (0.013) (0.013) (0.013) (0.013) (0.011) (0.013) (0.013) (0.012) (0.012) (0.012) (0.012) (0.010) (0.011) (0.010) (0.010)
Intervention 3 0.059 0.059 0.059 0.059 0.059 0.061 0.059 0.060 0.061 0.063 0.057 0.057 0.054 0.057 0.054 0.057

(0.013) (0.013) (0.013) (0.013) (0.013) (0.012) (0.013) (0.013) (0.012) (0.012) (0.012) (0.012) (0.011) (0.011) (0.011) (0.011)
Intervention 4 –0.035 –0.034 –0.034 –0.034 –0.034 –0.032 –0.034 –0.034 –0.032 –0.032 –0.037 –0.036 –0.038 –0.036 –0.038 –0.034

(0.013) (0.013) (0.013) (0.013) (0.013) (0.012) (0.013) (0.013) (0.012) (0.012) (0.012) (0.012) (0.011) (0.011) (0.011) (0.011)
Intervention 5 –0.059 –0.059 –0.059 –0.059 –0.059 –0.064 –0.059 –0.059 –0.064 –0.063 –0.061 –0.061 –0.061 –0.061 –0.061 –0.061

(0.013) (0.013) (0.013) (0.013) (0.013) (0.011) (0.013) (0.013) (0.012) (0.012) (0.012) (0.012) (0.010) (0.011) (0.010) (0.010)
Intervention 6 0.047 0.048 0.048 0.048 0.048 0.040 0.048 0.048 0.040 0.042 0.045 0.046 0.048 0.046 0.048 0.045

(0.013) (0.013) (0.013) (0.013) (0.013) (0.011) (0.013) (0.013) (0.011) (0.012) (0.010) (0.010) (0.009) (0.010) (0.009) (0.009)
Z0 - - - - - - - - - - –0.033 –0.035 –0.063 –0.068 –0.063 –0.066

 (0.006) (0.006) (0.004) (0.006) (0.004) (0.005)
Theil-U 0.525 0.525 0.460 0.525 0.458 0.428 0.523 0.455 0.426 0.407 0.515 0.512 0.497 0.510 0.499 0.488



TABLE 5

Hamilton’s Model (MS) and Lam’s Models (MSG) under Different Specifications and Intervention Type 2

Hamilton's model (MS) Lam's model (MSG)

Num. obs. AR(0)
101

AR(0)
100

AR(1)
100

AR(0)
99

AR(1)
99

AR(2)
99

AR(0)
98

AR(1)
98

AR(2)
98

AR(3)
98

AR(1)
100

AR(1)
99

AR(2)
99

AR(1)
98

AR(2)
98

AR(3)
98

Log(L(θ)) 251.295 248.634 248.660 245.374 245.415 248.116 242.165 242.275 244.941 245.864 251.327 249.011 253.387 247.737 251.914 253.206

P00 0.864 0.865 0.868 0.862 0.865 0.849 0.862 0.863 0.848 0.846 0.779 0.777 0.768 0.770 0.767 0.769
(0.069) (0.070) (0.074) (0.073) (0.078) (0.054) (0.075) (0.087) (0.055) (0.074) (0.040) (0.038) (0.034) (0.040) (0.034) (0.034)

P11 0.502 0.498 0.491 0.498 0.489 0.554 0.496 0.477 0.551 0.495 0.567 0.584 0.596 0.570 0.592 0.594
(0.150) (0.152) (0.160) (0.152) (0.162) (0.116) (0.154) (0.171) (0.118) (0.137) (0.123) (0.109) (0.088) (0.113) (0.088) (0.090)

µ0 0.015 0.015 0.014 0.015 0.014 0.016 0.015 0.014 0.016 0.015 0.017 0.017 0.017 0.017 0.017 0.017
(0.002) (0.002) (0.003) (0.002) (0.003) (0.002) (0.003) (0.003) (0.002) (0.003) (0.001) (0.0005) (0.0004) (0.0006) (0.0004) (0.0005)

µ1 –0.015 –0.015 –0.016 –0.015 –0.015 –0.014 –0.015 –0.015 –0.014 –0.016 –0.015 –0.014 –0.015 –0.015 –0.015 –0.015
(0.005) (0.005) (0.005) (0.005) (0.006) (0.003) (0.005) (0.006) (0.003) (0.005) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

σ0 0.013 0.013 0.013 0.013 0.013 0.012 0.013 0.014 0.012 0.012 0.010 0.010 0.009 0.010 0.009 0.009
(0.001) (0.001) (0.002) (0.001) (0.002) (0.001) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

φ1 - - 0.036 - 0.047 –0.123 - 0.080 –0.098 0.193 0.432 0.398 0.546 0.410 0.582 0.596
(0.158) (0.165) (0.164) (0.174) (0.175) (0.232) (0.116) (0.123) (0.112) (0.109) (0.120) (0.113)

φ2 - - - - - –0.383 - - –0.384 –0.303 - - –0.321 - –0.309 –0.420
(0.143) (0.141) (0.169) (0.100) (0.100) (0.115)

φ3 - - - - - - - - - 0.275 - - - - - 0.185
(0.172) (0.101)

Z0 - - - - - - - - - - –0.064 –0.066 –0.063 –0.067 –0.063 –0.065

(0.006) (0.006) (0.004) (0.006) (0.004) (0.005)
Theil-U 0.628 0.627 0.687 0.624 0.684 0.633 0.622 0.679 0.629 0.594 0.752 0.749 0.729 0.749 0.732 0.717
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The estimated parameters from both models are very similar and the sample
identifies two significant states for the Brazilian economy. The MS-AR(2) model
estimates in state 1 that the economy grows at an average negative rate of around
1.4% per quarter (–5.6% a year) while in state 0 the Brazilian economy grows at an
average rate of 1.6% per quarter (6.4% a year). The MSG-AR(2) model estimates
that in state 1 the economy grows at an average negative rate of around 1.5% per
quarter (6% a year) while in state 0 the Brazilian economy grows at a rate of 1.7%
per quarter (6.8% a year). Recessions in Brazil last a short time, averaging between
two and three quarters for both models. Expansions last twice as long. The MS
model estimates that periods of positive growth last on average between six and seven
quarters (p00=0.85), while for the MSG model the duration of expansions is around
four and five quarters (p00=0.77). Table 6 shows a summary of these results.

TABLE 6

Business Cycle Features for Selected Models

Type 1 Type 2

MS-AR(2) MSG-AR(2) MS-AR(0) MS-AR(2) MSG-AR(2)

Mean growth rate (%) –1.4 –1.5 –1.5 –1.4 –1.5
Recession

Duration in quarters 2-3 2-3 1-2 2-3 2-3

Mean growth rate (%)   1.7   1.7   1.5   1.6   1.7
Expansion

Duration in quarters 6-7 6-7 7-8 6-7 4-5

Thus, these models predict that the length of the Brazilian business cycle is
between two and three years. This short duration of the Brazilian business cycle is a
consequence of the economic instability and turbulence due to the hyperinflationary
process in the 1980s and the implementation of several stabilization plans in the last
two decades. These results are very similar to those obtained for Brazil in Chauvet
(2002a), Lima and Domingues (2000) and Mejia-Reyes (1999). In addition, Mejia-
Reyes finds that several other Latin American countries present these same business
cycle features.

The filtered and smoothed probabilities for the selected models are plotted in
Figures 4 to 7. Several results stand out from these inferences. First, the filtered and
smoothed probabilities models are very similar, which points out to the stability of
the recursive one-step-ahead estimation (filtered probabilities) compared to the
estimation using the whole sample (smoothed probabilities). Second, the probabilities
from the MS and the MSG models are also very similar, capturing the same features
and phases of the Brazilian business cycles.

Using the criteria that a turning point occurs if the smoothed probabilities of a
state are greater or equal than the probability of the other state, the Brazilian
economy experienced ten downturns between 1980 and 2000. However, some of
these contractions were very short-lived, lasting only one quarter (e.g., the low
growth phase in 1984 and the expansion in 1998). If we consider recessions as
periods of negative growth with a minimum duration of six months, the downturns
in 1982-1983, 1983-1984 would be considered as one longer recession rather than a
double dip. This is also the case for the downturns in 1997-1998. Under this
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minimum duration rule for business cycle phases, the Brazilian economy experienced
eight recessions in the last two decades. These results are corroborated by the findings
in Mejia-Reyes (1999),11 Lima and Domingues (2000) and Chauvet (2002a).

FIGURE 4

Filtered and Smoothed Probabilities of Recessions: MS AR(2) Model (Intervention Type 1)

MS Model Intervention Type 1
Filtered Probabilities of Recession
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MS Model Intervention Type 1
Smoothed Probabilities of Recession
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11. The results are consistent with the ones obtained by this author up to the last year of its estimation for Brazil (1995).



16

FIGURE 5

Filtered and Smoothed Probabilities of Recessions: MSG AR(2) Model with Intervention
  Type 1

MSG Model Intervention Type 1
Filtered Probabilities of Recession
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MSG Model Intervention Type 1
Smoothed Probabilities of Recession
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FIGURE 6

Filtered and Smoothed Probabilities of Recessions: MS AR(2) Model Intervention Type 2

MS Model Intervention Type 2
Filtered Probabilities of Recession
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MS Model Intervention Type 2
Smoothed Probabilities of Recession
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FIGURE 7

Filtered and Smoothed Probabilities of Recessions: MSG Model AR(2) with Intervention
  Type 2

MSG Model Intervention Type 2
Filtered Probabilities of Recession
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MSG Model Intervention Type 2
Smoothed Probabilities of Recession
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4.2  COMPARISON BETWEEN THE MS AND MSG MODELS

The MSG-AR(3) model nests the models selected as presenting the best fit to the
Brazilian business cycle: the  MS-AR(2) and the MSG-AR(2).  The likelihood ratio
used to test the MSG-AR(2) model against the MSG-AR(3) model has a standard
asymptotic distribution, χ2(1), and can be easily calculated using the likelihood values
presented in Table 5. The likelihood ratio is equal to 2.584 and, therefore, we cannot
reject that the MSG-AR(2)  model fits the data better than the MSG-AR(3) model. If
we can reject the MS-AR(2) model when compared to the MSG-AR(3) model than
we can say that the MSG-AR(2) model fits the data better than the MS-AR(2)
model. The likelihood ratio of this last test does not have a standard distribution and
we report below the Monte Carlo simulations used to implement the test.
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We have generated 1.000 trials  simulating the MS-AR(2) model under
intervention type 2  each with the same number of observations of our sample size.
For each trial both models [MS-AR(2) and MSG-AR(3)] were estimated and the
likelihood ratio statistic was computed. Figure 8 shows the histogram of the
likelihood ratio statistic obtained for these 1.000 trials. The null hypothesis of the
test is the MS-AR(2), estimated under intervention type 2, and the alternative
hypothesis is the MSG-AR(3) specification.

FIGURE 8

Histogram of the Likelihood Ratio [Null:MS-AR(2), Alternative:MSG-AR(3)]
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In the Monte Carlo simulations the likelihood ratio statistic computed at each
trial is less or equal to 11.94 for 95% of the trials, whereas the estimated likelihood
ratio computed using the likelihood values of Table 5 is equal to 16.53. The results
indicate that the null is rejected at a level of significance smaller than 5%.12

Therefore, we can conclude that the MSG-AR(3) model fits the data better.

We also test the MS-AR(0) model against the MSG-AR(3) model. The
likelihood ratio statistic of the test has a standard asymptotic distribution, χ2(4), and
can be computed using the likelihood values presented in Table 5. The estimated
likelihood ratio statistic is equal to 22.082. Therefore, the MS-AR(0) specification is
rejected at a level of significance smaller than 1%.

Despite of the result that the MSG-AR(2) model is the one that best fits the data
in-sample, this conclusion does not hold out-of–sample.  The out-of-sample
forecasting ability of several Markov switching models is presented in the next
Subsection 4.3.

4.3  OUT-OF-SAMPLE FORECASTING

This subsection compares the out-of-sample forecasting performance of several
Markov switching models with autoregressive components with linear models and
the MS-AR(0) model. Two linear models for changes in GDP were estimated for
comparison with the Markov switching models: an AR(3) and an ARMA(1,1)

12. Note that the MSG-AR(3) model has two more parameters than the MS-AR(2) model. If we were to apply the
standard critical value it would have been equal to 5.99 (χ2(2)) instead of 11.94.
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model.13 All models were estimated from 1976:2 up to 1992:1, and then recursively
re-estimated for each subsequent quarter from 1992:2 until the last quarter of the
sample, 2000:2 to generate the out-of-sample forecasts.  Appendix B shows how these
forecasts were calculated.

Results

We use the following statistic to compare any two models: the mean squared forecast
error (MSE) of one of the models divided by the MSE of the other model.  We also
report standard errors for these relative MSE.14 The standard errors are HAC robust
and were estimated using a Bartlett kernel with the number of lags, for each step-
ahead, equal to the number of computed forecast errors. There is an asymptotic
justification of the procedure adopted to calculate the standard errors, for recursively
estimated models, in West (1996).

Table 7 shows the root mean squared forecast error (RMSE) of the linear AR(3)
model and the relative MSE [relative to the AR(3) model] of several Markov
switching models, with interventions type 1 and 2, for forecasts from one to eight
quarters ahead. The model with the smallest relative MSE, for forecasts from two to
seven quarters ahead and for both types of intervention is the MS-AR(2). Almost all
the relative MSE of the MS-AR(2) model are smaller than one with the exception of
the eight-quarter-ahead forecast. Nevertheless, they are significantly smaller than one
only for intervention type 2 and for forecasts from four to six quarters ahead. The
ARMA(1,1) model  beats the AR(3) model for forecasts from one to two steps-ahead.
The ‘No Change’ model, has the worst forecasting ability for all steps-ahead.

Table 8 compares the same models with the ARMA(1,1) model. It shows that
the relative MSE of the MS-AR(2) model is smaller than one for forecasts from three
steps-ahead and on. Nevertheless, they are significantly smaller than one for forecasts
four and six steps-ahead and for intervention type 2. The AR(3) model forecasts
significantly better than the ARMA(1,1) only four quarters ahead and for both types
of intervention.

13. The identification of the ARMA model was implemented using AIC and SBC criteria.  In addition, given that structural
breaks generally lead to serial correlation in the residuals, Durbin-Watson test was used to test whether the residuals of
the selected model are white noise. The identification was implemented considering or not dummies for the period
between 1990.1 a 1991.2.

14. The standard errors were calculated using the Gauss routine made available by Mark W. Watson in his web site
http://www.wws.princeton.edu/~mwatson/



TABLE 7

Linear and Nonlinear Models: Out-of-Sample Forecasting Performance
MSE of each Model Relative to the MSE of the AR(3) Model

Linear AR(3) No change ARMA (1,1) MS-AR(0) MS-AR(2) MSG-AR(2) MSG-AR(3)

RMSE Relative MSE Relative MSE Relative MSE Relative MSE Relative MSE Relative MSE

Intervention type 1

1 0.01573 1.952 (0.412) 0.923 (0.033) 1.186 (0.070) 0.955 (0.108) 1.042 (0.126) 0.963 (0.125)
2 0.01644 2.916 (1.476) 0.923 (0.035) 1.142 (0.043) 0.922 (0.056) 0.915 (0.089) 0.829 (0.100)
3 0.01676 1.862 (0.733) 1.014 (0.016) 1.004 (0.011) 0.980 (0.017) 1.033 (0.012) 1.002 (0.009)
4 0.01686 1.919 (0.391) 1.034 (0.011) 1.019 (0.017) 0.974 (0.025) 1.009 (0.006) 0.994 (0.009)
5 0.01701 2.566 (0.820) 1.010 (0.011) 1.016 (0.014) 0.991 (0.030) 1.020 (0.007) 1.028 (0.012)
6 0.01709 1.910 (0.440) 0.992 (0.010) 1.012 (0.012) 0.980 (0.020) 1.017 (0.009) 1.031 (0.015)
7 0.01700 1.288 (0.220) 0.993 (0.008) 1.006 (0.019) 0.971 (0.029) 1.023 (0.009) 1.023 (0.009)

Steps-ahead

8 0.01745 2.259 (0.506) 1.003 (0.007) 1.008 (0.018) 1.000 (0.022) 0.999 (0.009) 1.001 (0.010)

Intervention type 2

1 0.01574 1.949 (0.422) 0.926 (0.018) 1.173 (0.070) 0.954 (0.084) 1.051 (0.060) 0.986 (0.064)
2 0.01636 2.946 (1.527) 0.934 (0.015) 1.141 (0.061) 0.929 (0.037) 0.951 (0.059) 0.911 (0.071)
3 0.01677 1.860 (0.752) 1.013 (0.032) 1.000 (0.022) 0.978 (0.022) 1.064 (0.074) 1.041 (0.066)
4 0.01694 1.903 (0.385) 1.025 (0.011) 1.008 (0.004) 0.971 (0.014) 1.078 (0.079) 1.037 (0.059)
5 0.01711 2.536 (0.801) 0.998 (0.006) 0.999 (0.002) 0.980 (0.017) 1.027 (0.050) 1.014 (0.040)
6 0.01719 1.889 (0.431) 0.982 (0.008) 0.995 (0.002) 0.978 (0.010) 1.007 (0.045) 1.017 (0.049)
7 0.01704 1.282 (0.214) 0.989 (0.006) 0.997 (0.002) 0.977 (0.013) 1.030 (0.061) 1.060 (0.079)

Steps-ahead

8 0.01745 2.259 (0.507) 1.003 (0.008) 1.004 (0.002) 1.001 (0.004) 0.982 (0.041) 1.003 (0.047)
Note:  The models were estimated from 1975:2 up to 1992:1, and then recursively re-estimated out-of-sample for each subsequent quarter from 1992:2 until the last quarter of the sample, 2000:2. The “No change” (martingale) model forecast a constant rate of growth for GDP. The entries “Relative
MSE” are the mean squared forecast error (MSE) of the model described in the first line relative to the MSE of the AR(3) model. The standard errors, shown in parenthesis, are HAC robust and were estimated using a Bartlett kernel with the number of lags, for each step-ahead, equal to the number of
computed forecast errors.



TABLE 8

Linear and Nonlinear Models: Out-of-Sample Forecasting Performance
MSE of each Model Relative to the MSE of the ARMA(1,1) Model

ARMA(1,1) No change Linear AR(3) MS-AR(0) MS-AR(2) MSG-AR(2) MSG-AR(3)

RMSE Relative MSE Relative MSE Relative MSE Relative MSE Relative MSE Relative MSE

Intervention type 1

1 0.01511 2.115 (0.515) 1.083 (0.038) 1.285 (0.101) 1.034 (0.099) 1.129 (0.118) 1.043 (0.115)
2 0.01579 3.160 (1.770) 1.084 (0.041) 1.237 (0.087) 1.000 (0.030) 0.992 (0.071) 0.898 (0.082)
3 0.01688 1.836 (0.702) 0.986 (0.015) 0.990 (0.018) 0.966 (0.013) 1.018 (0.022) 0.988 (0.020)
4 0.01715 1.856 (0.361) 0.967 (0.011) 0.986 (0.014) 0.942 (0.027) 0.976 (0.009) 0.962 (0.009)
5 0.01710 2.540 (0.803) 0.990 (0.010) 1.005 (0.009) 0.981 (0.022) 1.010 (0.010) 1.018 (0.011)
6 0.01703 1.925 (0.454) 1.008 (0.010) 1.020 (0.010) 0.988 (0.012) 1.025 (0.016) 1.039 (0.022)
7 0.01694 1.297 (0.219) 1.007 (0.008) 1.013 (0.011) 0.978 (0.022) 1.030 (0.012) 1.030 (0.012)

Steps-ahead

8 0.01747 2.253 (0.504) 0.997 (0.006) 1.005 (0.012) 0.997 (0.017) 0.997 (0.005) 0.998 (0.005)

Intervention type 2

1 0.01514 2.105 (0.509) 1.080 (0.022) 1.267 (0.095) 1.030 (0.086) 1.135 (0.058) 1.064 (0.060)
2 0.01581 3.152 (1.761) 1.070 (0.018) 1.221 (0.083) 0.995 (0.029) 1.018 (0.064) 0.975 (0.080)
3 0.01687 1.837 (0.703) 0.988 (0.032) 0.988 (0.016) 0.966 (0.015) 1.050 (0.049) 1.028 (0.042)
4 0.01714 1.857 (0.361) 0.976 (0.011) 0.984 (0.009) 0.947 (0.023) 1.052 (0.066) 1.012 (0.047)
5 0.01710 2.541 (0.803) 1.002 (0.006) 1.001 (0.006) 0.982 (0.017) 1.029 (0.051) 1.016 (0.040)
6 0.01703 1.924 (0.453) 1.019 (0.008) 1.013 (0.008) 0.997 (0.007) 1.026 (0.048) 1.036 (0.053)
7 0.01695 1.297 (0.219) 1.011 (0.006) 1.009 (0.005) 0.988 (0.016) 1.042 (0.058) 1.072 (0.077)

Steps-ahead

8 0.01747 2.253 (0.504) 0.997 (0.008) 1.001 (0.006) 0.998 (0.012) 0.979 (0.034) 1.000 (0.040)
Note:  The models were estimated from 1975:2 up to 1992:1, and then recursively re-estimated out-of-sample for each subsequent quarter from 1992:2 until the last quarter of the sample, 2000:2. The “No change” (martingale) model forecast a constant rate of growth for GDP. The entries “Relative
MSE” are the mean squared forecast error (MSE) of the model described in the first line relative to the MSE of the ARMA(1,1) model. The standard errors, shown in parenthesis, are HAC robust and were estimated using a Bartlett kernel with the number of lags, for each step-ahead, equal to the number
of computed forecast errors.
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Table 9 reports the MSE of the models relative to the MSE of the MS-AR(0)
model. It shows that the MS-AR(2) model has a relative MSE significantly smaller
than one for almost all steps-ahead and for both types of intervention. The same is
true for the AR(3) and ARMA(1,1) models for short run forecasts, one to two
quarters ahead.

Linear versus Nonlinear Models

For one-quarter-ahead forecast, the ARMA (1,1) model presents the lowest relative
MSE. On the other hand, the Markov switching models present the best forecasting
performance for two-quarter-ahead forecasts and on.  In particular, the MS-AR(2) is
the best in forecasting two to seven quarter-ahead. Thus, for forecasts of the annual
growth of real GDP, the MS-AR(2) model is the one with the most accurate
prediction in this out-of-sample forecasting test.

Intervention versus Non-intervention

Tables 10 and 11 show the relative out-of-sample performance of several Markov
switching models, for both types of intervention, when compared to their
counterparts without intervention. Table 10 shows the results for Hamilton’s models
[MS-AR(0), MS-AR(2) and MS-AR(4)] and Table 11 for Lam’s models [MSG-
AR(1), MSG-AR(2) and MSG-AR(3)]. Most of the relative MSE are smaller than
one indicating that the interventions have improved forecast ability. The MSG
models and the MS-AR(2) model have, overall, the smallest relative MSE. This is not
surprising given that these models, without intervention, concentrate the probability
of recession at the Collor Plans. Nevertheless, because the standard errors are
relatively high for most models, the relative MSE are in general not significantly
smaller than one. However, the greatest advantage of introducing interventions is
that they characterize the Brazilian business cycle without loss of forecasting ability.

These findings corroborate the evidence obtained by several authors in that
modeling nonlinearities underlying GDP growth improves its forecasting
performance. This is particularly true for the case of Markov switching models that
take into account abrupt changes and asymmetries of business cycle phases.

Recent Forecast Performance

As an illustration of the recent performance in forecasting GDP growth, a second
out-of-sample test was performed. The models were estimated from 1976:2 up to
2000:2, and then were used to predict the annual rate of growth of GDP from
2000:3 to 2001:4. Table 12 reports the out-of-sample forecasts of the annual rate of
growth of real GDP for 2000:3-2001:4.  As it can be observed, in this period the
MS-AR(2) and the AR(3) models provided the closest forecast of changes in GDP
compared to the alternative models. The best overall model, for intervention type 2,
is the MS-AR(2).



TABLE 9

Linear and Nonlinear Models: Out-of-Sample Forecasting Performance
MSE of each Model Relative to the MSE of the MS-AR(0) Model

MS-AR(0) No change  AR(3) ARMA (1,1) MS-AR(2) MSG-AR(2) MSG-AR(3)

RMSE Relative MSE Relative MSE Relative MSE Relative MSE Relative MSE Relative MSE

Intervention type 1

1 0.01713 1.646 (0.257) 0.843 (0.049) 0.778 (0.061) 0.805 (0.082) 0.879 (0.097) 0.812 (0.101)
2 0.01757 2.554 (1.101) 0.876 (0.033) 0.808 (0.057) 0.808 (0.069) 0.802 (0.096) 0.726 (0.105)
3 0.01679 1.854 (0.731) 0.996 (0.011) 1.010 (0.018) 0.976 (0.014) 1.028 (0.016) 0.998 (0.012)
4 0.01702 1.883 (0.376) 0.981 (0.016) 1.015 (0.014) 0.956 (0.016) 0.990 (0.017) 0.976 (0.015)
5 0.01714 2.527 (0.796) 0.985 (0.014) 0.995 (0.008) 0.976 (0.018) 1.005 (0.012) 1.012 (0.012)
6 0.01719 1.888 (0.430) 0.988 (0.011) 0.981 (0.009) 0.969 (0.013) 1.005 (0.011) 1.019 (0.017)
7 0.01705 1.281 (0.210) 0.994 (0.018) 0.988 (0.011) 0.965 (0.014) 1.018 (0.020) 1.017 (0.018)

Steps-ahead

8 0.01752 2.241 (0.499) 0.992 (0.017) 0.995 (0.012) 0.992 (0.005) 0.991 (0.010) 0.993 (0.008)

Intervention type 2

1 0.01704 1.662 (0.263) 0.853 (0.051) 0.790 (0.059) 0.813 (0.077) 0.896 (0.075) 0.840 (0.082)
2 0.01747 2.583 (1.128) 0.877 (0.047) 0.819 (0.056) 0.815 (0.071) 0.834 (0.076) 0.799 (0.082)
3 0.01677 1.859 (0.735) 1.000 (0.022) 1.012 (0.017) 0.978 (0.010) 1.063 (0.057) 1.041 (0.049)
4 0.01700 1.888 (0.377) 0.992 (0.004) 1.017 (0.009) 0.963 (0.015) 1.070 (0.077) 1.029 (0.057)
5 0.01710 2.539 (0.803) 1.001 (0.002) 0.999 (0.006) 0.981 (0.018) 1.028 (0.050) 1.015 (0.040)
6 0.01714 1.899 (0.435) 1.006 (0.002) 0.987 (0.008) 0.984 (0.011) 1.013 (0.045) 1.022 (0.049)
7 0.01702 1.286 (0.214) 1.003 (0.002) 0.992 (0.005) 0.980 (0.012) 1.033 (0.061) 1.063 (0.080)

Steps-ahead

8 0.01748 2.250 (0.503) 0.996 (0.002) 0.999 (0.006) 0.997 (0.006) 0.978 (0.039) 0.999 (0.045)
Note:  The models were estimated from 1975:2 up to 1992:1, and then recursively re-estimated out-of-sample for each subsequent quarter from 1992:2 until the last quarter of the sample, 2000:2. The “No change” (martingale) model forecast a constant rate of growth for GDP. The entries “Relative
MSE”  are the mean squared forecast error (MSE) of the model described in the first line relative to the MSE of the MS-AR(0) model. The standard errors, shown in parenthesis, are HAC robust and were estimated using a Bartlett kernel with the number of lags, for each step-ahead, equal to the number
of computed forecast errors.



TABLE 10

Hamilton’ s Model with and without Intervention: Out-of-Sample Forecasting Performance
MSE of the Model with Intervention Relative to the MSE of the Model without Intervention

MS-AR(0) MS-AR(2) MS-AR(4)

Intervention Intervention InterventionNo
intervention Type 1 Type 2

No
intervention Type 1 Type 2

No
intervention Type 1 Type 2

RMSE Relative MSE Relative MSE RMSE Relative MSE Relative MSE RMSE Relative MSE Relative MSE

1 0.0172 0.995 (0.025) 0.985 (0.020) 0.0159 0.938 (0.092) 0.939 (0.080) 0.0153 1.113 (0.120) 1.061 (0.122)
2 0.0180 0.951 (0.025) 0.941 (0.027) 0.0164 0.927 (0.040) 0.925 (0.039) 0.0157 1.073 (0.022) 1.065 (0.020)
3 0.0174 0.936 (0.036) 0.934 (0.035) 0.0169 0.961 (0.023) 0.959 (0.018) 0.0175 0.953 (0.050) 0.940 (0.060)
4 0.0177 0.930 (0.040) 0.928 (0.036) 0.0171 0.949 (0.040) 0.953 (0.036) 0.0181 0.915 (0.070) 0.921 (0.062)
5 0.0176 0.947 (0.034) 0.943 (0.031) 0.0171 0.976 (0.038) 0.977 (0.033) 0.0175 1.012 (0.031) 1.004 (0.025)
6 0.0171 1.006 (0.020) 1.000 (0.017) 0.0170 0.987 (0.022) 0.996 (0.018) 0.0178 0.977 (0.028) 0.953 (0.038)
7 0.0172 0.983 (0.039) 0.979 (0.034) 0.0170 0.969 (0.039) 0.979 (0.033) 0.0179 0.957 (0.038) 0.945 (0.038)

Steps-ahead

8 0.0181 0.940 (0.060) 0.936 (0.056) 0.0175 0.995 (0.033) 0.997 (0.029) 0.0177 0.970 (0.029) 0.959 (0.031)
Note:  The models were estimated from 1975:2 up to 1992:1, and then recursively re-estimated out-of-sample for each subsequent quarter from 1992:2 until the last quarter of the sample, 2000:2. The “No change” (martingale) model forecast a constant rate of growth for GDP. The entries “Relative
MSE” are the mean squared forecast error (MSE) of the model described in the first line relative to the MSE of the same model without intervention. The standard errors, shown in parenthesis, are HAC robust and were estimated using a Bartlett kernel with the number of lags, for each step-ahead, equal
to the number of computed forecast errors.



TABLE 11

Lam´s Model with and without Intervention: Out-of-Sample Forecasting Performance
MSE of the Model with Intervention Relative to the MSE of the Model without Intervention

MSG-AR(1) MSG-AR(2) MSG-AR(3)

Intervention Intervention InterventionNo
intervention Type 1 Type 2

No
intervention Type 1 Type 2

No
intervention Type 1 Type 2

RMSE Relative MSE Relative MSE RMSE Relative MSE  Relative MSE RMSE Relative MSE Relative MSE

1 0.0166 1.003 (0.161) 1.079 (0.066) 0.017 0.944 (0.142) 0.954 (0.089) 0.016 0.922 (0.142) 0.944 (0.085)
2 0.0168 1.003 (0.064) 0.994 (0.032) 0.017 0.829 (0.124) 0.853 (0.084) 0.017 0.786 (0.129) 0.855 (0.071)
3 0.0172 0.977 (0.051) 0.976 (0.028) 0.018 0.916 (0.078) 0.944 (0.043) 0.018 0.884 (0.072) 0.920 (0.039)
4 0.0173 0.978 (0.074) 0.982 (0.042) 0.018 0.922 (0.093) 0.994 (0.046) 0.018 0.905 (0.086) 0.952 (0.048)
5 0.0173 0.987 (0.061) 0.976 (0.041) 0.017 0.991 (0.063) 1.009 (0.027) 0.017 0.988 (0.061) 0.986 (0.031)
6 0.0173 0.986 (0.044) 0.984 (0.019) 0.018 0.967 (0.047) 0.968 (0.020) 0.017 0.986 (0.043) 0.983 (0.013)
7 0.0175 0.962 (0.070) 0.995 (0.017) 0.018 0.947 (0.072) 0.958 (0.034) 0.018 0.951 (0.071) 0.990 (0.017)

Steps-ahead

8 0.0178 0.969 (0.072) 1.003 (0.021) 0.018 0.967 (0.070) 0.950 (0.044) 0.018 0.964 (0.071) 0.966 (0.034)
Note:  The models were estimated from 1975:2 up to 1992:1, and then recursively re-estimated out-of-sample for each subsequent quarter from 1992:2 until the last quarter of the sample, 2000:2. The “No change” (martingale) model forecast a constant rate of growth for GDP.  The entries “Relative
MSE” are the mean squared forecast error (MSE) of the model described in the first line relative to the MSE of the same model without intervention. The standard errors, shown in parenthesis, are HAC robust and were estimated using a Bartlett kernel with the number of lags, for each step-ahead, equal
to the number of computed forecast errors.



TABLE 12

Out-of-Sample Forecasting Performance (2000:3-2001:4)

AR(3)
ARMA
(1,1)

MS-AR
(0)

MS-AR(2) MS-AR(4) MSG-AR(1) MSG-AR(2) MSG-AR(3)

AR(3)
RMSE MSE of the model relative to the MSE of the AR(3) model

No intervention 0.03013 1.04738 1.006 1.03045 1.11523 1.01906 1.04587 1.04721
Type 1 0.03022 - 1.03407 0.870 0.95607 1.06238 1.03477 1.19631 1.12761

Intervention Type 2 0.03031 - 1.03226 1.021 0.95640 1.03538 1.03333 1.18076 1.12016

ARMA(1,1)
RMSE

MSE of the model relative to the MSE of the ARMA(1,1) model

No intervention 0.03084 0.95476 - 0.960 0.98383 1.06478 0.97296 0.99856 0.99984
Type 1 0.03073 0.96705 - 0.842 0.92456 1.02738 1.00067 1.15689 1.09045

Intervention Type 2 0.03080 0.96875 - 0.989 0.92651 1.00303 1.00104 1.14386 1.08516

MS-AR(0)
RMSE

MSE of the model relative to the MSE of the MS-AR(0) model

No intervention 0.03022 0.99409 1.04119 - 1.02436 1.10864 1.01303 1.03969 1.04102
Type 1 0.02819 1.14916 1.18832 - 1.09867 1.22085 1.18911 1.37475 1.29580

Intervention
Type 2 0.03062 0.97983 1.01144 - 0.93712 1.01451 1.01249 1.15695 1.09757
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5  CONCLUSIONS
This paper estimates Hamilton’s model and Lam’s model, with Brazilian quarterly
GDP data from 1975:1 to 2000:2 (see Table 13), allowing for breaks at the Collor
Plans. Based on the likelihood ratio test, relative mean squared forecast error and the
filtered probabilities, we selected a MS-AR(2) (Hamilton’s model) and a MSG-AR(2)
(Lam’s model) as presenting the best fit to the Brazilian business cycle under two
different types of interventions. The estimated parameters from both models are very
similar.

The sample identifies two significant states for the Brazilian economy. The MS-
AR(2) model estimates that in state 1 the economy grows at a negative rate of around
1.4% per quarter (–5.6% a year) while in state 0 the Brazilian economy grows at a
rate of 1.6% per quarter (6.4% a year). The MSG-AR(2) model estimates that in
state 1 the economy grows at a negative rate of around 1.5% per quarter (–6% a year)
while in state 0 the Brazilian economy grows at a rate of 1.7% per quarter (6.8% a
year). Recessions in Brazil last a short time, averaging between two and three quarters
for both models. Expansions last twice as long. The MS model estimates that periods
of positive growth last on average between six and seven quarters, while for the MSG
model the duration of expansions is around four and five quarters.

We compared the out-of-sample performance of several Markov switching
models to a MS-AR(0), ARMA(1,1) and an autoregressive model [AR(3)]. The
models were estimated from 1976:2 up to 1992:1, and then recursively re-estimated
for each subsequent quarter, from 1992:2 until the last quarter of the sample,
2000:2, to generate the out-of-sample forecasts.  Overall, the MS-AR(2)  model
display the best forecasting performance, with the smallest relative MSE for two to
seven quarters ahead. This finding corroborate the evidence, obtained by several
authors, that modeling nonlinearities, underlying changes in GDP growth, improves
forecasting performance. This is particularly true for the case of Markov switching
models that take into account asymmetries of business cycle phases.

We also checked the out-of-sample performance of several Markov switching
models, estimated under both types of intervention with their counterparts without
intervention.  The results indicate that the interventions have improved forecast
ability. The MSG models and the MS-AR(2) model have, overall, the smallest
relative MSE.  Nevertheless, because the standard errors are relatively high, for most
models the relative MSE is not significantly smaller than one. However, the greatest
advantage of introducing interventions is that they characterize the Brazilian business
cycle without loss of forecasting ability.

As an illustration of the recent performance in forecasting GDP growth, the
models were estimated from 1976:2 up to 2000:2, and then were used to predict the
annual rate of growth of GDP from 2000:3 to 2001:4. The best overall model, under
intervention type 2, was the MS-AR(2) model.
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TABLE 13

Brazilian Quarterly Real GDP: 1975 — 2001

GDP  index Seasonally adjusted GDP index

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

1975   56.787   64.705   63.008   62.329   59.723   61.493   62.260   63.435
1976   63.574   70.248   69.003   67.759   66.839   66.802   68.148   68.940
1977   66.930   75.828   72.170   71.190   70.222   72.245   71.233   72.395
1978   68.966   77.563   77.487   76.394   72.325   74.066   76.422   77.645
1979   74.245   82.880   81.598   80.956   77.795   79.344   80.313   82.257
1980   81.082   87.657   86.827   84.192   84.919   84.062   85.313   85.595
1981   80.977   85.348   81.539   77.232   84.912   81.993   79.911   78.518
1982   77.256   85.975   84.637   79.832   80.876   82.743   82.838   81.054
1983   74.828   82.507   81.690   78.957   78.486   79.599   79.812   79.992
1984   77.935   86.282   85.909   84.694   81.965   83.419   83.798   85.558
1985   83.251   91.076   93.835   93.089   87.677   88.270   91.355   93.874
1986   89.245   98.020 101.486   99.861   94.335   95.141   98.565 100.594
1987   96.359 104.822 102.110   99.812 102.075 101.805   98.743 100.712
1988   96.474 104.507 104.557   97.619 102.467 101.335 100.708   98.815
1989   93.737 108.126 110.049 104.183 99.904 104.594 105.687 105.719
1990   96.181   98.081 105.870   98.044 102.900   94.492 101.729   99.736
1991   89.375 105.629 106.607   98.389 95.395 101.528 102.723 100.355
1992   94.101 103.706 101.491   97.624 99.973   99.339   98.416   99.781
1993   96.864 109.072 105.726 102.014 102.171 104.298 103.169 104.225
1994 101.786 113.110 112.373 112.159 106.962 108.063 110.218 114.430
1995 112.430 118.861 113.268 112.252 117.945 113.684 111.211 114.309
1996 109.976 121.541 121.607 118.251 115.639 116.293 119.304 120.263
1997 112.863 126.953 125.191 121.022 118.980 121.436 122.597 123.010
1998 115.162 128.082 125.734 118.945 121.640 122.347 122.937 120.950
1999 114.752 128.668 125.366 123.049 121.445 122.780 122.443 125.269
2000 121.153 134.096 134.669 132.747 128.569 127.856 131.141 134.869
2001 134.612 141.834 137.395 131.292 141.461 135.226 133.835 133.325

Sources: IBGE and IPEA.
Note:  Fix base (1980) GDP.  The GDP was seasonally adjusted using the X12-ARIMA software.
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APPENDIX A
Hamilton’s Filter

Hamilton’s nonlinear filter uses as input the ergodic and transition probabilities:

Prob(S t–1 = i, St = j |I t–1)= pij∑ =

1

0h
Prob (St–2 = h, St–1 = i | It–1) (10)

From these joint conditional probabilities, the density of ∆yt conditional on St–1,
St, and It–1 is:

f (∆yt |St–1 = i, St = j, It–1)= 
1– /2 ( ) 1/2 ( , ' ( ) ( )

| 1 | 1

1
[(2 ) | | exp( )

2
k i, j i j) i, j i, j

t tt t t tQ N Q N
−−

− −π −      (11)

The joint probability density of states and observations is then calculated by
multiplying each element of  (10) by the corresponding element of (11):

F(∆yt, St–1 = i, St = j|It–1) = f (∆yt  | St–1 = i, St   j, It–1) Prob(St–1 = i,St = j | It–1)          (12)

The probability density of ∆yt given It–1 is:

F (∆yt | It–1) = ∑ ∑= =

1

0

1

0j i
f(∆yt, St–1 = i, St = j |It–1)                                        (13)

The joint probability density of states is calculated by dividing each element of
(12) by the corresponding element of (13):

Prob (St–1 = i, St = j | It)= f (∆yt, St–1 = i, St = j | It–1) / f (∆yt | It–1) (14)

Finally, summing over the states in (14), we obtain the filtered probabilities of
recessions and expansions:

Prob (St = j | It) = ∑ =

1

0i
Prob (St–1 = i, St = j | It) (15)

The first-order assumption of the Markov chain implies that all relevant
information for predicting future states is included in the current state. Thus, ∆yt

depends only on the current and r most recent values of st, on r lags of ∆yt, and on a
vector of parameters θ:

p(∆yt | st, st–1, …, ∆yt–1, ∆yt–2,…; θ) = p(∆yt | st, st–1, …, st–r, ∆yt–1, ∆yt–2,…, ∆yt–r; θ)

Lam’s Filter

The first step of the algorithm is initialized with the distribution of the states in this
period conditional on information in the previous periods. From this, the
distribution of the states is generated, for the following period, using the Markov
process.  Thus, the first step calculates:
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First Step

P [St=1, St–1=st–1,..., St–r+1=st–r+1, ∑
=

t

i
iS

1

 = x| ∆yt–1, ∆yt–2,...]=

P [St=1| St–1=st–1] x ∑
=−

1

0rtS

P [ St–1=st–1,..., St–r+1=st–r+1, ∑
−

=

1

1

t

i
iS  = x–1| ∆yt–1, ∆yt–2,...]    (16)

and:

P [St=0, St–1=st–1,..., St–r+1 = st–r+1, ∑
=

t

i
iS

1

 = x | ∆yt–1, ∆yt–2,...]=

P [St=0| St–1=st–1] x ∑
=−

1

0rtS

P [ St–1 = st–1,..., St–r+1 = st–r+1, ∑
−

=

1

1

t

i
iS  = x–1| ∆yt–1, ∆yt–2,...] (17)

where ∑
=

t

i
iS

1

= x is the sum of the past states up to period t.

Second Step

The second step, which uses the result from the first step as input, computes the
joint distribution of the current observation and of the states:

f (∆yt, St, St–1,..., St–r+1, ∑
=

t

i
iS

1

| ∆yt–1, ∆yt–2,...) =
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t

i
iS

1

, ∆yt–1, ∆yt–2,...) P [St =

= st,..., St–r+1 = st–r+1, ∑
−

=

1

1

t

i
iS =  x| ∆yt–1, ∆yt–2,...] (18)

and:

f (∆yt, St, St–1,..., St–r+1, ∑
=

t

i
iS

1

| ∆yt–1, ∆yt–2,...) =

( )






+







α−∆+∆φ−−φ−φ−⋅σ−⋅σπ ∑

−

=

tyyxLLL
t

i
it

r
r 0

1

1

2
21

2 )1())2(1(exp21 �

2

1
11

1
211021 )1()1(













φα+φ−−φ−φ−α−φ−−φ−φ−+ ∑ ∑∑

=
+−

==

r

j
jt

r

jk
k

r

i
irr SSz ��   (19)



32

Third Step

In the third step, the joint distribution obtained above is used to compute the
likelihood of the observation conditional to its past:

f (∆yt, St, St–1,..., St–r+1, ∑
=

t

i
iS

1

| ∆yt–1, ∆yt–2,...) =

= ∑ ∑ ∑
= = =+−

1

0

1

0 01t rts s

t

x

f� (yt, St = st,..., St–r= st–r, ∑
=

t

i
iS

1

= x | ∆yt–1, ∆yt–2,...) (20)

Fourth Step

In the fourth step, the algorithm uses the result from the second and third steps to
calculate the distribution of the states conditional on the current information:

P [St = st,..., St–r= st–r, ∑
−

=

1

1

t

i
iS = x| ∆yt, ∆yt–1,...] =

= f (yt, St, St–1,..., St–r, ∑
=

t

i
iS

1

| ∆yt–1, ∆yt–2,...) / f (∆yt | ∆yt–1, ∆yt–2,…) (21)

Through these four steps the algorithm generates the conditional likelihood value to
each observation (third step) and the distribution of the states (from the fourth step),
which is then used to initialize again the algorithm for the following observation.
The algorithm is repeated for all observations, and the conditional likelihood
function is obtained from the sum of its value for each observation:

L [∆yT, ∆yT–1, ∆yT–2,..., ∆y1] = ∑
=

T

t 1

log  f (∆yt | ∆yt–1, ∆yt–2..., ∆y1) (22)

Since the second step requires data from r previous periods, the algorithm is
initialized in the observation r + 1. For the first step, the probabilities below are
required, which are obtained from their non-conditional counterparts.

P [Sr = sr,..., S1 = s1, ∑
−

=

1

1

t

i
iS = x| ∆yr,...] (23)

The filter used to estimate Lam’s model involves substantial more computation
than Hamilton’s algorithm for two reasons. First, in the calculation of the error, the
states for each observation include all the history of the Markov process, which is
treated as an additional variable.  Second, the initial value of the autoregressive
component is treated as an additional free parameter to be estimated. These two
components are represented in the third and second terms of equation (24),
respectively. When α0 and α1 are independent from t, the computation of the error E
is:
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When dummies are introduced in Lam’s model, the parameters α0 e α1 depend
on t and the error is then calculated as:
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APPENDIX B
One-step-ahead Predictions

As an illustration of the procedure, the predicted one-step ahead mean for the MS
AR(2) at the first forecast date T+1 = 1992:2 is given by:

)()(ˆ|ˆ 112111 −−++ µ−∆φ+µ−∆φ+µ=∆ ttttttt yyIy

where  )1(ˆ)0(ˆˆ 10 =α+=α=µ +++ ititit SPSP are the estimated drifts for each state. The
estimated probabilities are obtained from the filtered probabilities and from the
transition matrix. For example, the one-step-ahead predicted probability of a
recession is given by:

10001 )1()0()0(ˆ pSPpSPSP ttt =+===+

where P (St = i) for i = 0,1 are the ergodic probabilities. At time T + 2 = 1992:3, a
new observation of ∆yt is considered, and the models are re-estimated to obtain the
parameters and filtered probability. This procedure is repeated for each subsequent
observation up to T = 2000:3 in order to obtain the recursive one-step-ahead
forecasts of the filtered probability and the forecasts the Brazilian GDP growth.

Two-step-ahead Predictions

A similar procedure is used to obtain two-step-ahead prediction of the mean and
filtered probabilities of a recession at the first forecast date, which are now given by:
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)()ˆˆ(ˆ|ˆ 211122 ttttttt yyIy µ−∆φ+µ−∆φ+µ=∆ ++++

))(1())(0()0(ˆ
10110010100100001 ppppSPppppSPSP ttt +=++===+

Three- steps- ahead and on Predictions

2)ˆˆ()ˆˆ(ˆ|ˆ 222111 >∀µ−∆φ+µ−∆φ+µ=∆ −+−+−+−+++ hyyIy hththththttht

)|0(ˆ)|0(ˆ
tt

h
tht ISPPISP ===+

where P is the transition probability matrix with elements pij = pr[st = j| st–1 = i], where
i  denotes the ith column and j the jth row. Each column of P sums to one, so that 12’
P = 12’, where 12 is a column vector of ones.  For h-step ahead there are 2h possible
cases for the probabilities, which are computed directly from Hamilton’s filter.
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