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RESUMO

A existência de efeitos de “transbordamento”, como o impacto do preço de uma
unidade residencial no preço de seus vizinhos adjacentes, caracteriza a chamada
“dependência espacial”. Uma forma de se levar em conta a dependência espacial é
especificar modelos de defasagem espacial nos quais se supõe que uma variável
espacialmente defasada explica, pelo menos parcialmente, a variação da variável
dependente original. A maioria dos estudos fixa  a priori os parâmetros utilizados
na construção da matriz de pesos espaciais que serve de operador da defasagem
espacial.

Em contraste, este trabalho não pressupõe qualquer valor a priori para os
parâmetros da matriz de pesos espaciais na estimação de efeitos de
transbordamento. Nós adotamos uma abordagem de máxima verossimilhança
clássica e um procedimento bayesiano, Sampling–Importance–Resampling (SIR),
para estimar os pesos da matriz e a significância da dependência espacial.
Utilizamos dados de unidades residenciais da cidade de Belo Horizonte, e
comparamos os resultados obtidos com o procedimento desenvolvido com aqueles
derivados a partir da fixação a priori dos pesos espaciais. A análise mostra que a
função de verossimilhança tem um pico bem definido, e o parâmetro de
decaimento estimado é bastante diverso dos valores prefixados usualmente
adotados na literatura empírica, como o decaimento “tudo-ou-nada” dentro da
distância crítica ou o uso do “inverso da distância”.



ABSTRACT

Spatial dependence results from the existence of spillover effects such as the
impact of the price of one housing unit on the price of its adjacent neighbors. One
way to account for spatial dependence is to specify spatial lag models in which a
spatially lagged variable is assumed to play a role in explaining the variation of
the original dependent variable. Most studies use a priori non-sample information
in the construction of the spatial weights matrix which serves as a spatial lag
operator.

In contrast, this study assumes no a priori value for the spatial weights matrix in
the estimation of spillover effects. We adopt a classical maximum likelihood
approach and also a Bayesian Sampling-Importance-Resampling (SIR) procedure
to estimate the weights matrix and the significance of spatial dependence. We
apply the two estimation procedures to data on housing prices in the city of Belo
Horizonte, Brazil, and compare the results obtained with these two techniques
with the one derived by a priori fixing the weights. The analysis shows that the
likelihood function of the weights matrix parameters has a well-defined peak, and
the estimated distance-decay parameter is quite different from the standard a
priori  assumptions such as the “all-or-nothing” decay within the cut-off distance
or the “inverse distance” adopted in the empirical literature.
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1 - INTRODUCTION

Spatial dependence results from the existence of spillover effects such as the
impact of the price of one housing unit on the price of its adjacent neighbors. One
way to account for spatial dependence is to specify spatial lag models in which a
spatially lagged variable is assumed to play a role in explaining the variation of
the original dependent variable. Most studies use a priori non-sample information
in the construction of the spatial weights matrix which serves as a spatial lag
operator.

In contrast, this study assumes no a priori value for the spatial weights matrix in
the estimation of spillover effects. We adopt a classical maximum likelihood
approach and also a Bayesian Sampling-Importance-Resampling (SIR) procedure
to estimate the weights matrix and the significance of spatial dependence. We
apply the two estimation procedures to data on housing prices in the city of Belo
Horizonte, Brazil, and compare the results obtained with these two techniques
with the one derived by a priori fixing the weights.

The main results are: the estimated distance-decay parameter is quite different
from the standard a priori assumptions such as the “all-or-nothing/no decay within
the cut-off distance” or the “inverse distance” adopted in the empirical literature
(fractionary value instead of the integer value usually used); the likelihood
function of the weights matrix parameters has a well-defined peak; the Bayesian
procedure allows for the introduction of a priori information on the range of
parameters and assumes a flat prior leading to a posterior distribution not
significantly different from the likelihood.

This paper is organized as follows. Section 2 reviews the analytical issue of
connectivity in space. Section 3 describes the data and Section 4 presents the
methodology of joint estimation of both the “parameterized” weights matrix and the
spatial lag coefficient. Section 5 discusses the classical maximum likelihood
estimation; Section 6 presents the Bayesian approach; and Section 7 develops the
application of SIR and presents its results.

2 - CONNECTIVITY IN SPACE

The study of the spatial pattern of geographically identifiable phenomena has been
subject to increasing interest in the social sciences since the early 1970s. Special
statistical methods were first developed for geography, and then expanded to other
social sciences including economics, to examine whether the presence of a
phenomenon in one area or location makes its presence in a neighboring area more
or less likely. If the likelihood changes with proximity, the phenomenon is said to
exhibit spatial autocorrelation.

As Anselin (1988) points out, both spatial autocorrelation and spatial heterogeneity
are specific spatial aspects of data in regional science to which standard econometric
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methods do not apply: “At first sight spatial autocorrelation may seem similar to the
more familiar time-wise dependence encountered in econometric tests for serial
correlation but standard econometric results do not carry over in a straightforward
way to spatial dependence in cross-sectional samples. This is primarily a result of
the multidirectional nature of dependence in space.” Regarding spatial
heterogeneity, although the lack of structural stability of behavioral relationships
over space can be solved in many instances by standard econometric techniques
such as random coefficients regressions, there are situations in which those methods
are not applicable. For example, the presence of spatial dependence in the error
structure requires that the interaction between the spatial units must be taken into
account.

The first formal treatment of spatial autocorrelation was by Moran (1948) with the
introduction of the idea of binary conntiguity.  The underlying structure is defined by
0-1 values, with the value 1 assigned to spatial units having a common border (in the
case of  spatial areal units), or within a critical cut-off distance (in the case of point
pattern spatial units). Cliff and Ord (1973) present a more general approach to
express the interaction between two spatial areal units by using a combination of
distance measures (inverse distance, or negative exponentials of distance) and a
measure of the length of their common border. The formal expression is as follows:

wij = [dij]
-λ.[βij]

δ,                                                   (1)

where dij stands for the distance between spatial unit i and j, βij denotes the
proportion of the interior boundary of unit i in contact with unit j, and λ and δ are
paramaters. One distinctive feature of Cliff and Ord’s approach, as opposed to
Moran’s binary contiguity, is the assymmetry of the resulting weights in the fomer
case.  Spatial areal units such as counties are typically suited to have their
interaction expressed by expression (1): both the distance between their centers
and the relative importance of their common border are taken into account. Within
the context of Cliff and Ord’s approach, the notion of contiguity of spatial units
having a a point pattern geographic distribution (such as cities in a urban hierarchy
or housing units in a city) is related only to the distance between any two of them.1

The existence of spatial association is represented by relating a variable to its
spatially lagged counterpart. This relationship is constructed as a linear combination
of the observations in the system.  The econometric interpretation is straightforward:
the linear spatial association is actually a special case of a system of a simultaneous
linear equations problem.  Each equation in the system is expressed as:

yi = ∑jβijyj , ∀ i,                                                          (2)

The identification of the model parameters requires the imposition of at least some
constraints. The introduction of a spatially lagged variable is a typical approach

                                                          
1 Another way of analyzing contiguity is to construct a map of polygons from the original point
pattern spatial units. This would allow  the ususal more general weights matrix to be implemented.
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adopted in spatial analysis to reduce the estimation problem to that of determining
one “representative” parameter ρ:

yi = ρΣjwijyj                                                          (3)

where wij as in equation (1) is a measure of the spatial association between the
units i and j in the system.

3 - DATA

The database analyzed has price and characteristic information for a sample of Belo
Horizonte residential apartments lying within a spatial region of approximately 16
square kilometers. The apartments were included in a market survey of residential
prices conducted for the Belo Horizonte municipal government in October 1995 by
the Instituto de Pesquisas Econômicas e Administrativas (IPEAD) of the
Universidade Federal de Minas Gerais. The apartments’ characteristics were drawn
from the city’s property tax data files which include variables such as apartment area
(square meters), age, availability of garage space, local topography, and the level of
public services such as piped water, electricity, and garbage collection. Topography
is fairly homogeneous for the region studied, with a uniform index assigned to all
apartments by city tax assessors, and this characteristic does not affect their relative
market value according to realtors. The region is also well-provided with city
services, and there is a homogeneous overall index of their availability. For this
study, therefore, the sources of price variation, are the area of the housing unit in
square meters, its age, and the availability of a garage space. The average distance
between any two housing units in the sample is nearly 2.5 km, and the maximum
distance is 6.4 km.

4 - THE GENERAL SPATIAL MODEL AND THE LIKELIHOOD
FUNCTION

Y = ρ W Y + Xβ + ε,                                              (4)

ε = δ W ε + µ

ε ∼ N(0,  σ2 I)

µ ∼ N(0, Ω),

where β is a k x 1 vector of parameters associated with exogenous (not lagged
dependent) variables X, which is an n x k matrix, ρ is the coefficient of the
spatially lagged dependent variable, and λ is the coefficient in a spatial
autoregressive struture for the disturbance ε.
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The spatial weights matrix W has entries depending on the distance between the
spatial units and a distance-decay parameter. Each element wij of the matrix W is
set as follows:

                           wij   =  1/ (dij) 
λ ,                  if   i ≠ j  and  dij  ó τ,

                           wij  =  0,                              if   i ≠ j  and  dij >  τ,  or  if   i = j.

where dij =  Euclidian distance between spatial units i and j; λ = distance-decay
parameter;

τ = critical cut-off distance parameter (its value is set to be lesser than the highest
value of distance between any two units observed in the sample).

Let 2: A = I – ρ W

B = I – δ W

Then the model above can be represented by

AY = Xβ + ε

Bε = µ

E(µµ’) = Ω

Define v = Ω-1/2µ (a homocedastic random disturbance), then

AY = Xβ + B-1Ω1/2v

Therefore,

v = Ω-1/2B (AY – Xβ) = f (Y, X, θ).

Since v cannot be observed, the likelihood function has to be based on Y. The
Jacobian of this transformation:

J = det (∂v/∂Y) = |Ω-1/2B A|

The Range of ρ as a function of λ (the distance decay parameter) in the Spatial
Autoregressive Model

                                                          
2 The development below  follows Anselin  (1988).
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The specification test in Table 2 of Section 5 has strong evidence supporting the
non-rejection of  hypothesis B = I. Therefore, the development below will focus
on a Jacobian which includes only matrix A.

A = I – ρ W

|A| > 0

|A| = – ρn | W – (1/ ρ) I | = – ρn  |W*|

where  W* = W – (1/ ρ) I

It is worth to bear in mind that W is an inverse distance matrix and therefore W
and W* are symmetric matrices (and they have real eigenvalues). The relationship
between the eigenvalues of both matrix is:

1/ ρ + w* = w

where:

w* - eigenvalue of W* ;
w  - eigenvalue of W.

|A| =  – ρn | W – (1/ ρ) I | = – ρn  π
=

n

i 1

 *
iw  = - ρn  π

=

n

i 1

 (wi – 1/ ρ) = π
=

n

i 1

 (1 – ρwi)

If  1 – ρwi > 0, ~ i,  then |A| > 0. To learn about the range of ρ we have to know
what is the range of wi.

In general examples of weights matrices discussed in the spatial econometrics
literature refer to systems of areal units for which the notion of nearest neighbor is
associated with the share of a common border. In dealing with systems of areal
units, many authors work with the so called “standardized weights matrices”
which yield to well-behaved partial derivatives of the jacobian of the model w.r.t.
the parameters to be estimated. Typically this is done by requiring the summation
of  entries in the weights matrix, corresponding to spatial units sharing a common
border with a given unit, be equal to one. Ord (1975) argues that “... to lend a
natural interpretation to ρ, the scaling Σwij = 1 may be used for each location,
where the sums are over either i or j. The scaling implies that ρ < 1.” Doreian
(1980) examines applications of standardized weights matrices in his discussion
about the way the search procedure introduced by Ord simplifies maximum
likelihood methods applied to spatial models, and Anselin (1988) considers
examples on spatial econometric models also refering to systems of areal units for
which the weights matrices are normalized according to Ord’s scaling suggestion.
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This work deals with a system of spatial units distributed as points in a urban area
in which distance, instead of common border, is the criterion to assess the potential
interaction between any two units. Ord’s scaling procedure does not apply here
because it distorts the interpretation associated with a distance decay process. In
order to reduce the range of possible values of the parameter ρ while keeping the
metrics of the spatial arrrangement among the units of the system, the procedure
described below uses the maximum of sums of absolute values of row elements as
the convenient definition of norm to scale down the inverse distance spatial
weights matrix W.

Lemma

Let A be an n x n matrix, and let A be the  norm of matrix A defined as the
maximum of sums of absolute values of row elements.  If δ  is any characteristic
root of A then δ ≤ A.

Proof: This is a well know lemma  of  linear algebra and we skip the proof.

Proposition 1.

Let W be an n x n symmetric inverse distance weights matrix “ normalized” by
having each of its elements divided by the maximum of sums of absolute values of
row elements, and let wi be any characteristic root of W. Then  wi  ≤ 1 and max
{w i}  > 0.

Proof: The normalized matrix has W=1 and therefore by the Lemma
mentioned above  wi  ≤ W = 1. W has trace equal to zero (all
diagonal entries are set to zero by construction) and a non-zero determinant
and, therefore, at least one positive and one negative characteristic root.

Corollary: 1  > ρ  >  –1   ⇒ |A| > 0.

Since we have proved that |wi| ≤ 1 we can determine with some precision the range
of  ρ in an identified model. Let wmax = max {wi}, ρmax  =1/ wmax, wmin = min{wi}
and ρmin  = –1/| wmin|

0 < wmax   ≤  1  ⇒  ρmax  ≥ 1,      0 > wmin  ≥ – 1  ⇒ ρmin ≤ –1

therefore, 1 > ρ >  –1   ⇒   ρmin <  ρ <  ρmax ⇒|A| > 0.

Proposition 2. The requirement of a cut-off (critical) distance.

If there is no critical cut-off distance, the vector of parameters (β’; λ; ρ) = (∑
=

n

i
iy

1

,

0, ... 0; 0; –1)  (where the first entry of β is the equation’s intercept) gives a
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“perfect fit” to  equation y = ρW(λ) y + Xβ + ε. Therefore without a cut-off
distance  there are no degrees of freedom to estimate the equation.

Proof:

Consider the spatial lag model

y = ρW(λ)y + Xβ + ε                                                     (8)

If ρ = –1 and   λ = 0,   it follows that

yi  =  – y1 – y2 ..... – yi – 1 – yi + 1 .... – yn + Xiβ  +  εi                             (9)

If  β = (∑
=

n

i
iy

1

, 0, ...0)  then Xiβ = ∑
=

n

i
iy

1

 and (9) can be written as

yi  =  – y1 – y2 ..... – yi – 1 – yi + 1.... – yn +∑
=

n

i
iy

1

 +  εi .

Therefore, (β’; λ; ρ) = (∑
=

n

i
iy

1

, 0, ...0; 0 ; –1) in equation (8) implies

yi  =   yi   +  εi     ⇒  εi = 0 (the perfect fit).

The optimizing procedure does not deliver this degenerate solution if the inverse
distance weights matrix has some off-diagonal entries equal to zero, that means, it
has a critical cut-off distance beyond which the assumption of no spatial interaction
holds.

The predetermination of a critical cut-off distance amounts to set an a priori value
of λ to an infinitely large value (∞) to units with no spatial interaction between
them (zero entries in the matrix).  Once that restriction is assumed to hold, the
optimizing algorithm proceeds to estimate the sample based value of λ, which
describes the decaying (with distance) spatial interaction between any two units
within the critical distance, as well as the parameter ρ and the vector of parameters
β.

5 - THE CLASSICAL ESTIMATION OF DISTANCE DECAY AND
SPATIAL AUTOCORRELATION PARAMETERS ( λ AND ρ)

Specification tests, whose results are summarized in Table 2, support the
assumptions of a mixed regressive-spatial-autoregressive model with a
homocedastic structure of errors.  This amounts to have
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δ = 0 and ε ∼ N(0,  σ2 I) in equation (4). The log-likelihood  function of this mixed
regressive-spatial-autoregressive model, L(Y; ρ, λ, σ, β, X), is given by:

L(Y; ρ, λ, σ, β, X) = – (T/2) ln π – (T/2) ln σ2 + lnA –
– (1/2 σ2) (AY – Xβ)’(AY – Xβ)

where: A = I – ρ. W(λ) = matrix with known elements if ρ and λ are given;
W(λ) = matrix of weights that are a function of λ;
T = number of observations;
Y = vector of observations on the dependent variable (T x 1 vector);
X = T x K matrix of the observations on the “k” exogenous variables;

The log-likelihood function presented above can be concentrated with respect to β
and σ2 . The first order conditions for the maximization of the above log-
likelihood gives:

b  =  (X’ X)-1X’Ay                                                     (*)

(where b is the estimated value of β given that ρ and λ are fixed at it’s optimal
values)

Let,   b0  ≡  (X’ X)-1X’y     ;   bL  ≡    (X’ X)-1X’Wy .

Then,      b  =  (X’ X)-1X’y   –   ρ(X’ X)-1X’Wy   =  b0  –  ρbL.

Given ρ and λ , we can define two set of residuals: e0 ≡ y – X b0, eL  ≡ Wy – X bL.

The estimate for the error variance σ2 , considering the first order conditions for
the maximization of the above log-likelihood — given the two definitions of
residuals and the  optimal values ρ and λ — satisfies the following expression:

σ2  =  (1/N) (e0  – ρeL)’ (e0  – ρeL)                                      (**)

Therefore (*) and (**)  yields to the following concentrated likelihood:

LC  =  C  – (T/2) ln [(1/N)(e0  - ρeL)’ (e0  – ρeL)] + ln I – ρ . W(λ) ,

where C is a constant.  The expression above is a nonlinear function of two
parameters, ρ and λ, and numerical techniques are applicable. The steps to optimize
the likelihood are as follows:

1) set initial values to λ — which amounts to set W(λ) — and ρ in the appropriate
range;
2) maximize the concentrated likelihood with respect to ρ and λ using a numeric
technique (Powel - using the software GQOPT developed by Quandt );
3) given ρ and λ, compute b  =  b0  –  ρbL and σ2  =  (1/N)(e0  – ρeL)’ (e0 – ρeL)
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Table 1 presents the results of the estimated models using the log-likelihood
function above for different assumptions of  the critical cut-off distance (column cut-
off distance is given in kilometers). The dependent variable is log(price), the
exogenous variables are log(area), log(age), and a dummy variable for garage. The
parameters estimated are the ones correspondent to these variables, the decay
parameter (λ), and the coefficient correspondent to the spatially lagged dependent
variable (ρ).

Table 1
Estimated Models
DDeeppeennddeenntt  VVaarr iiaabbllee  ==  lloogg((PPrr iiccee))  ooff   tthhee  RReessiiddeennttiiaall   UUnniitt

Cut-off
Distance

Stat. Decay
Spatial

Lag Coefficient
Constant log(Area) log(Age) Garage

1.5 Coeff. 1.0045E-14 0.00239 5.97780 0.98318 -0.05922 0.19918
SD - (0.00051) (0.39439) (0.07369) (0.03905) (0.07044)

2.0 Coeff. 0.17057 0.00177 6.06338 0.95687 -0.05498 0.16839
SD (0.37407) (0.00041) (0.40319) (0.07675) (0.04047) (0.07147)

2.5 Coeff. 0.46601 0.00162 5.89751 097336 -0.04019 0.15406
SD (0.21217) (0.00035) (0.39402) (0.07395) (0.03956) (0.07047)

3.0 Coeff. 0.58179 0.00141 5.84228 0.98084 -0.03534 0.16440
SD (0.19650) (0.00036) (0.40998) (0.07660) (0.04093) (0.07269)

3.5 Coeff. 0.65413 0.00128 5.76306 0.99572 -0.03458 0.17323
SD (0.19997) (0.00039) (0.42791) (0.07808) (0.04204) (0.07444)

4.0 Coeff. 0.64162 0.00138 5.66229 1.00005 -0.03283 0.17839
SD (0.19782) (0.00046) (0.44546) (0.07828) (0.04221) (0.07479)
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Model’s specification test

The general spatial model presented in expression (4) reproduced below represents
situations where observations are available for a cross-section of spatial units, and
spatial dependence may exist regarding both the dependent variable and the error
terms.

Y = ρ W Y + Xβ + ε,                                          (4)

ε = δ W ε + µ

ε ∼ N(0,  σ2 I)

µ ∼ N(0, Ω),

Manipulation of the expression above leads to the following alternative
representation:

Y  =  (ρ  +  δ  –  ρδW)WY  +  Xβ  –  δWXβ  –  +  µ,
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which can also be written as:

Y  =  (ρ  +  δ)WY  +  Xβ  –  δWXβ  – ρδW 2Y  +  µ                    (4’)

White’s test has a combined null hypothesis of correct specification and
homocedasticity of the error structure.  The spatial lag specification adopted in this
work (ρ  ≠  0, δ  = 0) is nested in expression (4’) above:

Y  =  ρWY  + Xβ  +  µ;

therefore, the non-rejection of the null hypothesis (White’s test) for this specification
provides evidence of no spatial dependence in the error structure. Table 2 shows the
results of both White’s and Jarque-Bera’s tests for a number of critical cut-off
distances. The null hypotheses of homocedasticity/no-misspecification and
normality are not rejected in all cases.

Table 2

WWhhiittee’’ ss  aanndd  NNoorrmmaall ii ttyy  TTeessttss

White's Heteroskedasticiy and Specification Test Jarque - Bera's Normality Test

F(8,44) Qui-Squared(8) Qui-Squared(2)CUT

Statistic P-Value Statistic P-Value Statistic P-Value

1,5 0,170771 0,9937310 1,596057 0,990996 0,500389 0,778649
2,0 0,530738 0,8269010 4,664293 0,792780 0,901241 0,637232
2,5 0,846079 0,5679520 7,066122 0,529516 0,575469 0,749961
3,0 0,955095 0,4826540 7,841871 0,449067 0,636687 0,727353
3,5 0,745856 0,6510200 6,329057 0,610424 0,643670 0,724818
4,0 0,755071 0,6432780 6,397811 0,602763 0,748944 0,687652

The justification for the standard procedure of pre-setting the weights matrix (that
means, for a given specification have its parameter(s) predetermined) comes from
the assumption that the way it describes the connectivity among the spatial units in
the system is known a priori. In terms of the estimation procedure, this amounts to
have more degrees of freedom as compared to an analysys which has both the model
and the spatial structure determined by the data. In contrast, the advantage of the
latter approach is not having the validity of the estimates depending on the extent to
which the spatial structure is correctly reflected in the weights. The estimated
value(s) of the weights matrix parameter(s) may as well convey relevant information
about the spatial process being analyzed.

The distance-based weights matrix used here depends only on the decay parameter
λ (0 ≤ λ < ∞) which affects the estimated spatial model (for a critical cut-off
distance equals to 2.5 km) in the way illustrated by Table 3 below.  The estimated
decay parameter λ = 0.46601 is nearly half a way between the “all-or-nothing”
predefined value λ = 0 (every neighbor within the cut-off distance is equally
important) and the inverse distance predefined value λ = 1 (the relative importance
of neighbors within the cut-off distance is inversely proportional to it).
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Table 3

PPrreeddeeff iinneedd  VVeerr ssuuss  EEssttiimmaatteedd  DDeeccaayy  PPaarraammeetteerr
DDeeppeennddeenntt  VVaarr iiaabbllee  ==  lloogg((PPrr iiccee))  ooff   tthhee  RReessiiddeennttiiaall   UUnniitt

Cut-off
Distance

Stat. Decay
Spatial

Lag Coeff.
Constant log(Area) log(Age) Garage

2.5 km Coeff.
SD

0 (Predefined)
-

0.00143
(0.00034)

5.90702
(0.40464)

0.98236
(0.07576)

-0.04929
(0.03998)

0.14192
(0.07218)

2.5 km Coeff.
SD

0.46601
(0.21217)

0.00162
(0.00035)

5.89751
(0.39402)

0.97336
(0.07395)

-0.04019
(0.03956)

0.15406
(0.07047)

2.5 km Coeff.
SD

1 (Predefined)
-

0.00084
(0.00033)

5.94571
(0.41991)

0.99538
(0,07840)

-0.02765
(0.04214)

0.16934
0.07462

2.5 km Coeff.
SD

2 (Predefined)
-

0.00004
(0.00002)

6.02088
(0.45313)

1.02814
(0.08384)

-0.03476
(0.04593)

0.16907
(0.08056)

Generating the empirical distribution of parameters under the null adopted
hypothesis by using bootstrap

The generation of artificial data sets based on the parameter estimates obtained with
the original sample allows for a better understanding of the sampling distribution of
the maximum likelihood estimator (MLE) used here. This resampling method,
known as bootstrap, uses frequently the assumption of independently and identically
distributed errors regarding the stochastic component of the presumed data-
generating process. If this stochastic component is assumed to have a known
distribution, random numbers drawn from that distribution allow for the generation
of a set of  “new samples.”

Assume that the data-generating process is modeled after equation (4) reproduced
below:

Y = ρWY + Xβ + ε,

ε ∼ N (0, σ2I)

where 2’ = [β, ρ, λ, σ]’ a (k + 3) x 1 is the vector of parameters in which β is a k x
1 vector of the coefficients of the exogenous variables, ρ, λ, and σ are scalars
representing, respectively,  the coefficient of the spatially lagged dependent
variable, the distance decay parameter in the spatial matrix weights, and the
variance of the structure of errors. The distance decay parameter affects each
element wij of W according to the relationship wij = 1/(dij)

λ, where dij is the
distance between any two units i and j in the system.

The bootstrap approximates the distribution of Ñ – 2, where Ñ stands for the
estimates of the vector of parameters [β, ρ, λ, σ]’, by an empirical distribution
derived from the data. First, estimates of these parameters are obtained from the
original data set by using the estimator (MLE in this case) whose sampling
properties are the objective of analysis.  Next, estimates of the unobservable errors
ε are generated drawing T times (T = number of observations) with replacement
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from the normalized  residuals. The non-rejection of the null hypothesis of the
normality of the residuals (Table 2) justifies the choice of the normal distribution
as the “urn” from which the random numbers are drawn. This set of “drawn
errors” generates a set of pseudo data Y* which is used then to estimate a new set
of parameters Ñ.

The procedure above is replicated to simulate 289 additional data sets generated
using MLE to estimate the parameters for each of those samples.  Table 4 reports the
results of the bootstrap simulation for the parameters ρ and λ: they are very close the
values adopted as the null hypothesis (λ = 0.466, ρ = 0.0162, standard deviations of
0.21217 and 0.00035, respectively).

Table 4

BBoooottssttrr aapp  SSiimmuullaatteedd  RReessuull ttss
(critical cut-off distance in km = 2.5)

Parameter λ ρ

mean 0.4206864 0.0016167
Standard Deviation 0.2347235 0.0003672

The null hypotheses about the values are: 0,466 (λ), 0,0162 (ρ), 0,21217(sd λ) e 0,00035 (sd ρ).
Simulation number = 289

Figure 1
Histograms With Simulated Results
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6 - THE CONCENTRATED LIKELIHOOD AND THE INTEGRATION
WITH RESPECT TO β AND σ WITH A FLAT PRIOR FOR THESE
COEFFICIENTS

The likelihood of the mixed regressive-spatial-autoregressive model, "(Y*; ρ, λ, σ,
β, X), is given by:

"(Y*; ρ, λ, σ, β, X) =   (2π) - T / 2 . σ - T . |A| . e )X-(YX-(Y /( - ββσ )')221           (1)

where:
A = I - ρ . W(λ) = matrix with known elements if ρ and λ are given;
W(λ) = matrix of weights that are a function of λ;
T = number of observations;
Y* = vector of observations on the dependent variable (T x 1 vector);
Y  = AY* =  T x 1 vector;
X = T x K matrix of the observations on the “k” exogenous variables.

Let:

β
^

 = (X’ X)-1X’ Y

σ
^ 2 = [(Y – Xβ

^
)’(Y – Xβ

^
)] / T

Then

"(Y*; ρ, λ, σ, β, X) = (2π) - T / 2 . σ-T.|A| . e )]ˆ–(')'ˆ–(ˆ) [ˆ2/ 1( 22 ββββσσ XX+T–          (2)

We assume that our prior p.d.f. for β and σ are independent from other coefficients
of the model and that our information about β and σ is diffuse or vague. Given our
assumptions we can take the elements of β and log σ to be independently and
uniformly distributed [as suggested by Zellner (1971)]; that is the joint prior for β
and σ, P(β, σ), is

P(β, σ)     ∝    1/ σ,                                          -∞ < βi < ∞   i = 1, 2, ..., K;
                                               0 < σ < ∞

If we multiply "(Y*; ρ, λ, σ, β, X)  in (2) by P(β, σ) we obtain:

f (β, σ / ρ, λ, X, Y*) ∝ σ - T-1 . |A| . e )]ˆ–(')'ˆ–(ˆ) [ˆ2/1( 22 ββββσσ XX +T–             (3)

If we integrate the function above with respect to  β, we obtain:

g(σ/ ρ, λ, X, Y*)   ∝  σ - (T + 1)  . |A| . e )ˆ2/ˆ( 22 σσ− T
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which is in a form of an inverted gamma p.d.f. If we integrate the function above
with respect to σ, we obtain:

m(Y*; ρ, λ, X)  ∝  |A| . 2(T - 2) / 2 Γ(T/2) . (σ
^

2) - T/2   ∝     |A| .  (σ
^

2) - T/2

(where: Γ(.) = gamma function)

or

ln m(Y*; ρ, λ, X) = C  + ln |A| – (T/2) ln σ̂ 2                              (4)

(where: C = constant)

This last expression is exactly the concentrated likelihood used by Anselin (1988)
to estimate ρ given λ. From a Bayesian point of view it can be interpreted as the
distribution of Y*, given ρ, λ and X, when we have diffuse information about β
and σ expressed by a uniform and independent distribution for  β and log σ.

The Priors for ρ and λ

Let “N " be the norm of matrix W defined as “the maximum value of a set of
values in which each element is the sum of the elements of a line of matrix W ”.
We suppose we have diffuse information for λ in the interval (0, ∞) and for ρ in
the interval [–1/N(λ), 1/N(λ)] [W(λ) is always normalized dividing all its elements
by N(λ)]. That is, we know the range for ρ given λ and, therefore, the distributions
for ρ and λ are no longer independent.

If we assume that log λ and ρ are uniformly distributed, in their respective ranges,
than the joint prior p.d.f. for them is given by

p(ρ, λ ) ∝ N(λ) / λ,                  0 < λ < ∞;

-1/N(λ) < ρ < 1 / N(λ).

Therefore, the posterior for  ρ, λ , n(ρ, λ /X, Y*), is:

n (ρ, λ /X, Y*)  ∝  [N(λ) / λ] . |A| .  (σ̂ 2) -T/2,             0 < λ < ∞                         (5)

– 1/N(λ) < ρ < 1 / N(λ)

If we integrate the joint  p. d. f. for β and σ given in equation (3) with respect to σ,
we obtain:

k (β/ ρ, λ, X, Y*) ∝  |A| .  {T σ̂ 2 + (β – β̂ )’X’ X (β – β̂ )} -T/2
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The posterior for β, r(β/X, Y*), is:

r (β/X, Y*) = ∫∫ k(β/ ρ, λ, X, Y*) n (ρ, λ /X, Y*) dρdλ                                  (6)

r(β/X, Y*)  ∝ ∫∫ {T 2σ̂  + (β – β̂ )’ X’ X (β – β̂ )} -T/2 [N(λ) / λ] . |A|2 . ( 2σ̂ ) -T/2 dρdλ

The next section describes how we  use the Sampling-Importance-Resampling
(SIR) method — introduced by Rubin (1988), to obtain a concentrated likelihood
[m(Y*; ρ, λ, X) in equation (4)] sample, a sample for the posterior of ρ and λ [n(ρ,
λ/X, Y*) in equation (5)], and how we can use SIR to obtain the mean of the
posterior distribution of β [r (β/X, Y*) as described in equation (6)]. The
integrations involved in the determination of the posteriors of ρ and λ and the
posterior of β can also be achieved by MCMC (Makov Chain Monte Carlo)
methods like the Metropolis-Hasting algorithm [Hasting (1970)], and a special
case of the single-component-Metropolis-Hasting algorithm known as Gibbs
Sampler [Geman & Geman (1984)] that became popular after the articles of
Gelfand & Smith (1990) and Gelfand et alii (1990).

7 - SAMPLING-IMPORTANCE-RESAMPLING (SIR): SAMPLES FOR
THE CONCENTRATED LIKELIHOOD AND FOR THE POSTERIOR
OF ρ AND λ

Since the joint prior pdf for ρ and λ is not proper it cannot be used as an
importance function. Therefore, a gamma distribution with parameters 100 e 200
was used for λ and, given λ, a uniform distribution with range in –1/N(λ) < ρ <
1/N(λ) was used for ρ. The parameters of the gamma distribution were chosen
based on the maximum likelihood estimate for λ. Since we have an almost flat
prior for λ and ρ we expect the shape of the posterior to be closed to the shape of
the likelihood. The mean of the chosen gamma distribution is 0.5 and the variance
is 0.0025.

Let q(ϕ) [ϕ = (λ, ρ)] be the importance function for λ and ρ. The SIR method is as
follows:

i) Generate draws ϕ1, ϕ2, ..., ϕn from q(ϕ). Each draw is generate by taking a draw
for λ from Ga(100,200) and, given de value of λ, taking a draw for ρ from the
uniform distribution  U (–1/N(λ), 1/N(λ)). We have chosen n=100,000.

ii ) Resample ϕi, i = 1,..., nr with probability πi, and

πi = [p(ϕi) m(Y*; ϕi, X)/ q(ϕi)]/ ∑
=

n

j 1

[p(ϕj) m(Y*; ϕj, X)/q(ϕj)]

(if we want a sample of the posterior of ϕ)
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or

πi = [m(Y*; ϕi, X) /∑
=

n

j 1

[m(Y*; ϕj, X)]

(if we want a sample of the likelihood of ϕ)

where: p(.) is the prior distribution for λ and ρ and m(.) is the concentrated
likelihood for λ and ρ (both were defined in the last section). We have chosen nr =
2,000.

It can be shown that the sample generated by the resample is a sample of the
posterior or the likelihood of ϕ depending on the πi selected.

Our interest is to use SIR to obtain an approximation for the posterior and likelihood
distribution of β, λ and ρ.

The posterior mean of β and ϕ are obtained  by the following integrations,

E(β/X, Y*) = ∫β β r(β/X, Y*)d β =  ∫ϕ { ∫β β k(β/ϕ, X, Y*) d β} n (ϕ//X, Y*) dϕ =

= ∫ϕ E(β/ϕ, X, Y*) n(ϕ/X, Y*) dϕ

E(ϕ/ X, Y*) =  ∫ϕ ϕ n(ϕ/X, Y*) dϕ

Using SIR they can be approximated by

E(β/X, Y*) = ∑
=

 nr

j 1

E(βi /ϕi) . fi       and    E(ϕ/ X, Y*) =∑
=

 nr

j 1

ϕi . fi

where fi is the relative frequency of  the draw ϕi in the resample.

Similarly the marginal posterior of  β, using SIR, can be approximated by

r(β/X, Y*) = ∑
=

 nr

j 1

k(β/ϕ, X, Y*) . fi

Empirical Analysis

Tables 5 and 6 present the results of the resample for the likelihood and posterior of
λ, ρ, and Figure1 shows the histograms of the posterior and likelihood samples of
this two parameters.  The values shown in Table 5 provide evidence that the SIR
procedure is quite successful in obtaining a sample for the likelihood: the values of
the mode of λ and ρ are very close to the estimated values obtained by maximum
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likelihood, and there is a large number of points being selected by the resample.
Results of Table 6 refer to the posterior sample and are also encouraging: as
expected — since our joint prior for λ and ρ are relatively flat, the values obtained
for the posterior are very similar to those presented for the likelihood. The
histograms of Figure 2 show that the shapes of the likelihood and the posterior are,
as expected, very similar.  Finally, Table 7 presents basic statistics of the likelihood
and posterior distributions obtained with the SIR procedure (3rd through 6th
column), and reproduces data from Table 4 (1st and 2nd columns) regarding the
bootstrap simulated results computed under the null hypothesis of classical MLE
estimates.

Table 5

LL iikkeell iihhoooodd  SSaammppllee

Hyperparameter λ
Number

of
Points

ρ Number
of Points

Constant Area Age Garage

25% 0.477488 187 0.00132391 240 5.88324 0.961539 -0.0401399 0.154794
50% 0.499271 385 0.00159293 375 5.89811 0.973093 -0.0373774 0.156884
75% 0.521873 582 0.00182816 502 5.91511 0.986307 -0.0349617 0.159275
Mode 0.443874 9 0.00164931 408 5.89455 0.970324 -0.0367984 0.156383
Estimated Value
(Max. Likelihood) 0.466000 - 0.00162000 - 5.89800 0.973 -0.0400000 0.154000

OBS: Likelihood Sample.

Table 6

PPoosstteerr iioorr   SSaammppllee

Hyperparameter λ Number
of Points ρ Number

of Points
Constant Area Age Garage

25% 0.471142 290 0.00136491 391 5.88366 0.962332 -0.0411516 0.153550
50% 0.494048 642 0.00159348 681 5.89846 0.973613 -0.0387170 0.155897
75% 0.518521 1012 0.00182770 969 5.91287 0.984986 -0.0364059 0.158038
Mode 0.440467 16 0.00146116 512 5.90035 0.975256 -0.0392041 0.156927
Estimated Value
(Max. Likelihood) 0.466000 - 0.00162000 - 5.89800 0.973000 -0.0400000 0.154000

OBS: Posterior Sample.

Table 7

Boostrap Classical MLE and SIR

Bootstrap Simulated
Results

SIR

Posterior Likelihood
Hyperparameter

λ ρ
λ ρ λ ρ

mean 0.4206864 0.0016167 0.4951869 0.0015945 0.4988072 0.0015825
mode - - 0.4404670 0.0014612 0.4438740 0.0016493
Standard
Deviation

0.2347235 0.0003672 0.0302537 0.0003573 0.0287179 0.0003664

The null hypotheses about the values are: 0,466 (λ), 0,0162 (ρ), 0,21217(sd λ) e 0,00035 (sd ρ).
Simulation number = 289.
Importance Functions:  λ ~ Ga(100,200) e ρ ~ U (-1,1).



ESTIMATION OF A WEIGHTS MATRIX FOR DETERMINING SPATIAL EFFECTS

19

Figure 2
Histograms of the Posterior and Likelihood Samples
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8 - CONCLUSIONS

This study adopts a classical maximum likelihood approach and also a Bayesian
Sampling-Importance-Resampling (SIR) procedure to estimate the weights matrix
and the significance of spatial dependence. It appplies the two estimation
procedures to data on housing prices in the city of Belo Horizonte, Brazil, and
compares the results obtained with these two techniques with the one derived by a
priori  fixing the weights.
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The main results are: the estimated distance-decay parameter is quite different
from the standard a priori assumptions such as the “all-or-nothing/no decay within
the cut-off distance” or the “inverse distance” adopted in the empirical literature
(fractionary value instead of the integer value usually used); the likelihood
function of the weights matrix parameters has a well-defined peak; the Bayesian
procedure allows for the introduction of a priori information on the range of
parameters and assumes a flat prior leading to a posterior distribution not
significantly different from the likelihood.
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