## Tendências tecnológicas mundiais em telecomunicações

Fernanda De Negri\*
Leonardo Costa Ribeiro\*\*

#### 1 INVESTIMENTOS EM P&D NO BRASIL E NO MUNDO

O setor de tecnologia da informação e comunicação (TIC) é um dos setores mais intensivos em pesquisa e desenvolvimento (P&D) e um dos maiores responsáveis pelos investimentos mundiais em P&D. Na economia norte-americana, por exemplo, cerca de 35% dos investimentos privados em P&D são feitos por empresas dos setores de TICs (tabela 1).

Recentemente, um estudo realizado pela Comissão Europeia (LINDMARK *et al.*, 2008) mostrou que grande parte da distância existente entre Estados Unidos e Europa em termos de investimentos privados em P&D se deve ao setor de TICs.¹ O setor privado norte-americano investe 1,88% do produto interno bruto (PIB) em P&D, contra 1,19% do setor privado europeu. No setor de TICs, estes investimentos são de 0,65% do PIB nos EUA e 0,31% na Europa (tabela 1).

TABELA 1 Investimentos privados em P&D como proporção do PIB: Europa, Estados Unidos e Brasil (%)

|                             | EUA  | EUROPA | BRASIL |
|-----------------------------|------|--------|--------|
| Setores não ligados às TICs | 1,23 | 0,88   | 0,41   |
| Setores de TICs             | 0,65 | 0,31   | 0,11   |
| Total                       | 1,88 | 1,19   | 0,5    |

Fonte: Lindmark *et al.* (2008) e, para o Brasil, Ministério da Ciência e Tecnologia (indicadores disponíveis em: <a href="http://www.mct.gov.br">http://www.mct.gov.br</a>) e Pesquisa Industrial de Inovação Tecnológica, do Instituto Brasileiro de Geografia e Estatística (PINTEC/IBGE) de 2005.

Nota: ¹Estimativa baseada na participação dos setores de TICs (equipamentos de informática; equipamentos e serviços de telecomunicações; software e serviços de informática; e equipamentos de precisão) no total dos investimentos privados em P&D no Brasil, segundo a PINTEC de 2005.

Não por acaso, o sétimo programa marco de P&D europeu,² que é o principal instrumento da Comunidade Europeia para o financiamento à pesquisa na Europa, entre 2007 e 2013, deu ênfase significativa para o setor de TICs. Este programa alocou €9 bilhões dos pouco mais de €50 bilhões previstos no plano para investimentos em pesquisas na área de TICs; é o maior montante previsto para um único setor do programa.³

No caso brasileiro, as diferenças – em termos de recursos alocados em P&D – em relação aos EUA e à Europa são ainda mais marcantes. O setor privado brasileiro investe, segundo dados de 2008 do Ministério da Ciência e Tecnologia (MCT), cerca de 0,5% do PIB em P&D, entre os quais apenas 20%, ou 0,1% do PIB, são realizados pelos setores de TICs.

Entre os setores de TICs na Europa, os mais intensivos em P&D são o de equipamentos de comunicação e o de *software* e serviços de informática. Juntos, estes dois setores investiram quase €16 bilhões dos €31 bilhões investidos pelos setores de TICs na Europa em 2004 (LINDMARK *et al.*, 2008). Serviços de telecomunicações representam menos de 10% deste total, o que reflete a tendência, observada nos últimos anos, de redução da pesquisa por parte das operadoras de serviços e sua concentração nos fornecedores de equipamentos.

<sup>\*</sup> Diretora-adjunta da Diretoria de Estudos e Políticas Setoriais, de Inovação, Produção e Infraestrutura (Diset) do Ipea.

<sup>\*\*</sup> Analista do Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (Inmetro).

<sup>1.</sup> Incluindo-se equipamentos, componentes e serviços de informática; equipamentos e serviços de telecomunicações; equipamentos de multimídia; e instrumentos de medição e controle.

<sup>2.</sup> Ver: <a href="http://cordis.europa.eu/fp7/home\_es.html">http://cordis.europa.eu/fp7/home\_es.html</a>.

<sup>3.</sup> Ainda assim, vale ressaltar os números apontados pelo terceiro artigo deste boletim, que mostram que os investimentos em P&D das maiores empresas do setor de TICs superam em muito esses valores.

Por sua vez, as empresas brasileiras nos setores de TICs investiram, em 2005, pouco mais de R\$ 2 bilhões em P&D. Os setores que mais investiram foram os de *software* e serviços de informática (pouco mais de R\$ 650 milhões), e o setor de serviços de telecomunicações (R\$ 620 milhões). As empresas fabricantes de equipamentos de comunicação ficaram na terceira posição, com investimentos de pouco mais de R\$ 550 milhões em P&D.

# 2 PATENTES DAS LÍDERES MUNDIAIS EM EQUIPAMENTOS DE TELECOMUNICAÇÕES: TENDÊNCIAS RECENTES<sup>4</sup>

Dado que o setor de equipamentos de telecomunicações é um dos destaques nas TICs, em termos de investimentos em P&D, cabe perguntar quais tipos de inovação vêm sendo desenvolvidos pelas principais empresas deste setor ao redor do mundo. Outra questão importante tem relação com o tipo de competências científicas que estão sendo demandadas para realizar estas inovações.

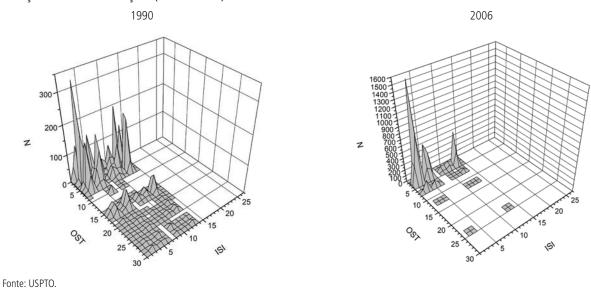
Para isso, analisam-se, neste trabalho, as patentes registradas no United States Patent and Trademark Office (USPTO) pelas principais empresas mundiais fabricantes de equipamentos de telecomunicações,<sup>5</sup> nos anos de 1990, 1998 e 2006. Embora existam questionamentos sobre a qualidade das patentes como indicador tecnológico, elas ainda constituem um dos poucos indicadores comparáveis mundialmente, e o único indicador que possibilita a análise feita neste artigo. As patentes foram, na tabela 2, agrupadas segundo a classificação de subdomínios tecnológicos proposta pelo Observatoire des sciences et techniques (OST). A primeira análise que se pode fazer diz respeito às variações nos principais domínios tecnológicos das patentes do setor nos últimos anos.

**TABELA 2**Participação percentual dos principais domínios tecnológicos nas patentes das empresas do setor de *fabricação de equipamentos de comunicação* registradas no USPTO (1990, 1998, 2006)

| Subdomínio tecnológico                 | 1990  | 1998  | 2006   |
|----------------------------------------|-------|-------|--------|
| Componentes elétricos                  | 10%   | 9%    | 7%     |
| Ótica                                  | 10%   | 6%    | 8%     |
| Audiovisual                            | 8%    | 8%    | 8%     |
| Semicondutores                         | 14%   | 11%   | 11%    |
| Informática                            | 9%    | 22%   | 21%    |
| Telecomunicações                       | 16%   | 24%   | 24%    |
| Outros                                 | 33%   | 20%   | 22%    |
| Número absoluto de patentes analisadas | 1.720 | 5.564 | 17.335 |

Fonte: USPTO. Elaboração dos autores.

Obviamente, o domínio tecnológico de telecomunicações – que contém patentes de equipamentos de rede, sistemas de comunicação e transmissão, antenas, radiodifusão etc. – é o mais expressivo, representando cerca de 24% das patentes registradas pelas empresas do setor. Entretanto, o mais interessante é verificar que outros domínios tecnológicos são também importantes nestas patentes, e que alguns têm ganhado espaço nos últimos anos. Componentes elétricos, ótica e semicondutores têm perdido espaço nas patentes destas empresas nos últimos anos, sugerindo que estes segmentos, ao contrário do que ocorria em outros períodos, não são os que estão impulsionando a fronteira tecnológica do setor. Por sua vez, cresce a importância da informática –


<sup>4.</sup> Resultados preliminares.

<sup>5.</sup> Foram selecionadas as líderes mundiais no setor, tais como NEC, Cisco, Nokia, Motorola etc. Foram selecionadas patentes das mesmas empresas em todos os anos.

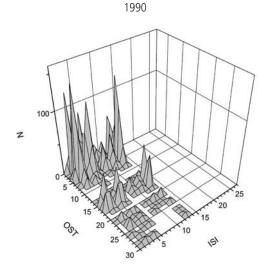
que inclui computadores, memórias, periféricos etc. – nas patentes destas empresas, especialmente entre 1990 e 1998, o que evidencia a crescente convergência entre informática e telecomunicações e a também crescente integração entre empresas de ambos os setores.

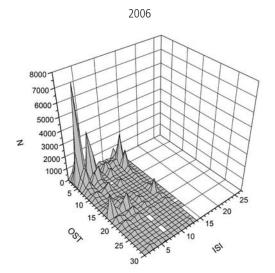
Além da análise de subdomínios tecnológicos, a partir da observação das patentes depositadas no USPTO, é possível estudar as citações a artigos científicos existentes em cada patente. Estes artigos foram classificados em áreas científicas, a partir da classificação do Institute for Scientific Information (ISI). Identificando-se a área científica do artigo citado e o subdomínio tecnológico da patente, foram construídas matrizes de interação entre ciência e tecnologia para as empresas do setor de telecomunicações. Este exercício foi feito tanto para operadores (quadro 1) quanto para fornecedores de equipamentos (quadro 2) e as matrizes podem ser observadas a seguir. No eixo *OST*, estão os subdomínios tecnológicos das patentes; no eixo *ISI*, as áreas científicas citadas e no eixo *N*, o número de vezes em que uma determinada área científica é citada pelas patentes de determinados domínios tecnológicos. Uma matriz mais completa significa maior interação entre produção tecnológica e produção científica.

**QUADRO 1**Matrizes de interação entre ciência e tecnologia para as empresas líderes mundiais em serviços de telecomunicações (1990 e 2006)



O primeiro movimento importante que pode ser observado a partir dessas matrizes é a redução da interação entre ciência e tecnologia no caso das empresas operadoras (quadro 1) em paralelo a uma maior diversificação desta interação no caso dos fornecedores de equipamentos (quadro 2). Embora o número absoluto de interações tenha crescido em ambos os casos, para as operadoras a diversidade de domínios tecnológicos e de áreas científicas se reduz drasticamente, evidenciando esta menor interação entre ciência e tecnologia.


Por um lado, isso reflete o fato, já conhecido, de que as inovações tecnológicas no setor de telecomunicações passaram a ser realizadas muito mais pelos fornecedores de equipamentos que pelas operadoras. Por outro lado, o que também se pode observar a partir destes dados é que este movimento ocorre ao mesmo tempo que a pesquisa científica vai se tornando cada vez mais importante para as inovações dos fornecedores e cada vez menos relevante para as inovações desenvolvidas pelas empresas operadoras. Vale ressaltar que, no conjunto da economia, o movimento que pode ser observado é justamente o de ampliação da interação entre ciência e tecnologia.


Elaboração dos autores.

<sup>6.</sup> A metodologia utilizada baseou-se no trabalho de Albuquerque et al. (2009) e Ribeiro et al. (2009).

<sup>7.</sup> A legenda para os domínios tecnológicos OST e áreas científicas ISI encontra-se no anexo.

**QUADRO 2**Matrizes de interação entre ciência e tecnologia para as empresas líderes mundiais no setor de *fabricação de equipamentos de comunicação* (1990 e 2006)





Fonte: USPTO. Elaboração dos autores.

No caso dos fornecedores, paralelamente a um maior espalhamento das interações entre domínios tecnológicos e áreas científicas, refletido em poucos espaços vazios na matriz, também ocorre uma concentração dos picos de interação. Em 1990, as principais interações observadas na matriz eram, em primeiro lugar, entre o domínio tecnológico de telecomunicações e a área científica de engenharia eletrônica. A seguir vinham os semicondutores com física, e semicondutores com engenharia eletrônica; e, em quarto lugar, informática com engenharia eletrônica. Em 2006, o principal pico de interação se deu entre informática e engenharia eletrônica. A interação entre telecomunicações e engenharia eletrônica caiu para o segundo lugar, enquanto informática com outras engenharias e informática com ciência dos materiais passam a ser importantes picos de interação.

Esses números, além de reforçarem o crescimento do domínio tecnológico de informática e a redução da importância dos semicondutores, mostram a emergência de outras áreas científicas. A área de *outras engenharias* (na qual está classificada a engenharia mecatrônica) e a ciência dos materiais, por exemplo, passaram a ser mais relevantes na produção de inovações no setor de telecomunicações.

A engenharia eletrônica continua a ser a área científica mais relevante para o desenvolvimento tecnológico do setor, com praticamente 30% de todas as citações nas patentes das empresas de telecomunicações. A área de química inorgânica e engenharia química, assim como a área de *outras engenharias* (mecânica, mecatrônica), mantém sua importância ao longo dos últimos anos (cada uma destas duas áreas com cerca de 14% das citações feitas nas patentes). A física, por sua vez, perde relevância, enquanto ganha importância a ciência dos materiais como uma área emergente nas patentes das empresas de telecomunicações. Isto sugere, provavelmente, uma ampliação das pesquisas para a utilização de materiais diferenciados e/ou novos materiais (com maior condutividade, por exemplo) para a fabricação de equipamentos eletrônicos e de comunicação.<sup>8</sup>

<sup>8.</sup> Um exemplo é a utilização de grafeno na fabricação de transistores, o que pode aumentar a velocidade de equipamentos eletrônicos.

## **3 CONSIDERAÇÕES FINAIS**

Mais que chegar a conclusões definitivas, este trabalho pretendeu levantar questões que contribuam para que se possa avaliar as oportunidades e, especialmente, os grandes desafios para o setor de telecomunicações no Brasil.

O setor de TICs é um dos mais dinâmicos em termos de inovações tecnológicas em âmbito mundial. Os investimentos em P&D pelos grandes *players* são extremamente significativos: sete das 20 maiores empresas inversoras em P&D no mundo pertencem ao setor.

O setor de TICs no Brasil, por sua vez, apesar de ser um dos mais inovadores em comparação com o conjunto da indústria brasileira, investiu, em 2005, o equivalente a 0,1% do PIB (seção 1). Isto é muito pouco em comparação com países mais competitivos neste setor, embora seja maior que Portugal (0,05% do PIB) e Espanha (0,08%),<sup>9</sup> países conhecidos do Brasil no setor de telecomunicações.

Além disso, no Brasil, ao contrário do que se observa nos países desenvolvidos, o segmento de serviços de telecomunicações continua sendo um dos que mais investem em P&D no conjunto das TICs. Enquanto isso, a tendência mundial tem sido, há vários anos, de ampliação dos investimentos em P&D dos fornecedores de equipamentos de comunicação, além, é claro, de crescimento da importância de setores de software e serviços de informática. Entretanto, o que explica esta diferença de posicionamento brasileiro pode não ser, necessariamente, a pujança tecnológica do país em serviços de telecomunicações, mas a baixa capacidade inovativa dos demais segmentos de TICs, relativamente aos países desenvolvidos. Se o Brasil pretende ser mais competitivo em telecomunicações e em TICs, de modo geral, é crucial ampliar significativamente os esforços tecnológicos do país nesta área.

Para isso, é preciso contar, também, com a produção científica e com uma maior interação entre ciência e tecnologia. O que as matrizes de C&T mostram é que a produção científica tem se tornado cada vez mais fundamental para ampliar a inovação e o desenvolvimento tecnológico de um país ou setor de atividade. Apesar disso, no caso brasileiro, ainda é muito pequeno o número de empresas que utilizam os cientistas e a academia brasileira para dar suporte aos seus processos inovativos. Da mesma forma, ainda é muito pequeno o número de pesquisadores das universidades brasileiras envolvidos em parcerias com o setor privado.

Claramente, existem outros desafios tão importantes quanto a interação entre ciência e tecnologia para que o Brasil possa construir e sustentar vantagens competitivas nas tecnologias de informação e comunicação. O certo é que, assim como a ampliação dos investimentos em inovação é condição necessária para o crescimento das TICs no Brasil, o próprio desenvolvimento destas tecnologias também é condição fundamental para a competitividade da economia brasileira como um todo.

### **REFERÊNCIAS**

ALBUQUERQUE, E. *et al.* Atividades de patenteamento em São Paulo e no Brasil. *In*: FAPESP. **Indicadores de ciência, tecnologia e inovação em São Paulo.** cap. 5, 2009.

LINDMARK, S.; TURLEA, G.; ULBRICH, M. Mapping R&D investment by the European ICT business sector. Joint Research Center (JRC), Reference Report, 2008.

RIBEIRO, L. C. *et al.* **Matrices of science and technology interactions and patterns of structured growth:** implications for development. Scientometrics. 2009. Disponível em: <a href="http://www.springerlink.com/content/2174610530365460/fulltext.pdf">http://www.springerlink.com/content/2174610530365460/fulltext.pdf</a>>.

<sup>9.</sup> Lindmark et al., 2008.

## **ANEXO**

|    | Áreas científicas – ISI                 |    | Domínios tecnológicos – OST       |
|----|-----------------------------------------|----|-----------------------------------|
| 1  | Mathematics                             | 1  | Electrical components             |
| 2  | Materials Science                       | 2  | Audiovisual                       |
| 3  | Electronic Engineering                  | 3  | Telecommunications                |
| 4  | Nuclear Sciences                        | 4  | Information technology            |
| 5  | Mechanical, Civil and Other Engineering | 5  | Semiconductors                    |
| 6  | Inorganic Chemistry and Engineering     | 6  | Optics                            |
| 7  | Analytical Chemistry                    | 7  | Analysis, measurement and control |
| 8  | Physical Chemistry                      | 8  | Medical engineering               |
| 9  | Organic Chemistry                       | 9  | Organic fine chemicals            |
| 10 | Applied Physics                         | 10 | Macromolecular chemistry          |
| 11 | Solid State Physics                     | 11 | Pharmaceuticals and cosmetics     |
| 12 | Geosciences                             | 12 | Biotechnology                     |
| 13 | Other Physics                           | 13 | Agricultural and food products    |
| 14 | Ecology                                 | 14 | Technical procedures              |
| 15 | Food Science and Agriculture            | 15 | Surface technology and coating    |
| 16 | Biotechnology                           | 16 | Material processing               |
| 17 | Microbiology                            | 17 | Materials and metallurgy          |
| 18 | General Biology                         | 18 | Thermal techniques                |
| 19 | Pharmacology and Pharmacy               | 19 | Basic chemical processing         |
| 20 | Public Health                           | 20 | Environment and pollution         |
| 21 | Pathology                               | 21 | Machine tools                     |
| 22 | Neuroscience                            | 22 | Engines, pumps and turbines       |
| 23 | Reproduction Medicine and Geriatrics    | 23 | Mechanical components             |
| 24 | General Medicine                        | 24 | Handling and printing             |
| 25 | Internal Medicine                       | 25 | Agricultural and food machinery   |
| 26 | Research Medicine                       | 26 | Transport                         |
| 27 | Immunology                              | 27 | Nuclear engineering               |
|    |                                         | 28 | Space technology and weapons      |
|    |                                         | 29 | Consumer goods and equipment      |
|    |                                         | 30 | Civil engineering and building    |