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ABSTRACT

We develop a new Bayesian estimator that is able to deal with multivariate panel data struc-
ture in the presence of spatial correlation. The analysis of panel data introduced here allows 
us to analyze not only the fixed effect but also the random effect model. This work extends 
the previous study undertaken by Gamerman and Moreira (2004) which only spatial scale is 
considered. To estimate the random effect model we use the hierarchical analysis that can be 
applied to estimate some categories of longitudinal data models. The Monte Carlo simula-
tions demonstrate the ability of this new estimator to replicate quite well simulated data. To 
show the empirical relevance of this new estimator we apply it to the deforestation data in 
the Brazilian Amazon.

Keywords: multivariate regressions; spatial correlation; panel data; fixed effect; Markov 
chain Monte Carlo.

RESUMO

Neste estudo desenvolvemos um estimador Bayesiano capaz de lidar simultaneamente com 
uma estrutura de regressão multivariada de dados em painel e com correlação espacial. A 
análise dos dados em painel contempla os casos de pooling, efeito fixo e efeito aleatório. 
Para estimação do modelo com efeito aleatório, usamos a análise hierárquica. As simulações 
de Monte Carlo via cadeia de Markov demonstraram a capacidade do estimador para repli-
car os dados muito bem simulados. Usamos ainda dados de desmatamento da Amazônia 
brasileira para atestar a relevância empírica desse novo estimador.

Palavras-chaves: regressão multivariada; correlação espacial; dados em painel; efeito fixo; 
Monte Carlo via cadeia de Markov. 
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Spatial Multivariate Regressions with Panel Data

1 INTRODUCTION

In this paper we develop a new estimator that is able to deal with multivariate panel data 
structure in the presence of spatial correlation. We departed from a Bayesian inference 
practice, which brings important advantages in terms of the ability to obtain “more 
confident estimates in the presence of small samples with a high-dimensional space of 
parameters”, (Gelman et al., 2003, p. 696). This work extends the previous study under-
taken by Gamerman and Moreira (2004) where only spatial scale is considered. Besides 
that we join cross-section and time series in the same framework based on the panel data 
structure (Hsiao, 1995; Baltagi, 1995; Arellano, 2003). The analysis of longitudinal data 
introduced here allows us to analyze not only the fixed³ effect but also the random effect. 
The univariate model for panel data was extensively treated in the Bayesian paradigm. 
Laird and Ware (1982); and Chib and Carling (1999), are the primary references. Good 
expositions can be found in Koop (2003); Lancaster (2004) and Greenberg (2007).

The introduction of a panel data structure brings some new difficulties, mainly in 
the random effect model (Laird and Ware, 1982). The specification we follow to model 
the random effect is denoted by classical econometrics as the error components model 
(Baltagi, 1995). The method which we apply to estimate the random effect model can 
be understood as an extension of the one that appear in Greenberg (2007), for univari-
ate regressions. In this case, due to a large number of parameters the simpliest form 
of Markov chain Monte Carlo (MCMC) method would slow to converge. Hence, we 
use an algorithm based on hierarchical analysis that can be applied to estimate some 
categories of longitudinal data models. This methodology frames parameters in groups 
minimizing time computing. 

In a frequentist perspective multivariate regression model was studied by many 
authors. Baltagi (1981; 1995), Baltagi and Li (1992), and Kinal and Lahiri (1990; 1993) 
shows that a consistent estimate can be obtained using 3SLS while Cornwell et al. (1992) 
employ GMM approach. Notwithstanding these models do not take into consideration 
spatial autocorrelation dependence. An interesting case that can be analysed is the vector 
autoregressive with panel data (PVAR) as it will be shown in this paper.

Finally, we apply our estimator to deal with the problem associated with defores-
tation in the Brazilian Amazon. The common wisdom will link cattle ranching to the 
increase of deforestation in the Brazilian Amazon. We show that since a more complex 
structure is taken into account cattle ranching is not a important driver of deforestation.



8

B r a s í l i a ,  S e p t e m b e r  2 0 1 6

The article is organized as follows. The section 2 presents distint models of multi-
variate regression with panel data while describe how to frame them into more compact 
matrix form that will be usefull to undertake our estimation procedure. In section 3 we 
offers methods to estimate these models based on Bayesian inference. We use artificial 
data generated by Monte Carlo simulation to validate our methodology. In section 4 
we use an empirical perspective to estimate the model of dynamics of the land-use in 
Brazilian Amazon. Finally, some concluding remarks are presented in section 5. 

2 MULTIVARIATE REGRESSIONS WITH PANEL DATA

2.1 General Model (Pooling)

The structural vector regression model with panel data with Q endogenous variables can 
represented in the following way:

.                       (1)

The indexes i and t are associated, respectively, to each spatial unit and each 
time period. Let  is the vector Q 1 of endogenous variables and 

 is the Q 1 vector of random terms with  where  is the  
Q Q diagonal matrix. The Q 1 vector of individual effects  that not 
varies in time dimension is introduced to model the spatial heterogeneity in the data. Let 

 for  is the vector of exogenous variables. Each K is associ-
ated to the effect of the k-th exogenous variable on the system. The contemporaneous 
relationships among the endogenous variables are represented by the Q Q matrix A, 
and  is a Q  K matrix that contains the coefficients related to the effect of xitk on yit. 
The vector autoregressive with panel data (PVAR) is a special case of (1) in which xit = 
yit-k. The vector of individual effect  can be treated as fixed or random component. In 
the last case,  with  a Q Q diagonal matrix. By simplicity from now on we 
assume that there is just one exogenous variable. In this case (1) can be rewritten such as 

,                                                                                        (1’)

where  is the K 1 vector and  is a matrix the Q K.
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In order to accommodate the sample data and introducing notations we firstly 
consider the pooling model in which the individual component is not included. The 
treatment of the specific individual component will be undertaken in the next sections. 
We need some additional notations to allocate the sample data in a more compact way. 
The information concern each unit i can be put in a matrix Yi such as

 , where Yi is matrix T Q

where T is the size of time dimension. Based on it the information related all the units 
can be framed defining a T N Q matrix Y in the following way. 

.

The information related to the exogenous variable and the disturbance can be also 
represented respectively by the matrices X and E elaborated by the same way as Y. Thus 
the pooling model can be framed in a compact form 

,                                                                                                 (2)

where Y and E are NT Q matrices, and X is NT K. We assume that E is mactrice Nor-
mal such as . Provided that A is invertible, then (2) has a reduced 
form given by

.                                                                                                 (3)

The relationship between structural form and reduced form1 is based on the fol-
lowing identities

1. More details about structural and reduced form can be found in Hamilton (2003).
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                                                (4)

 is also Q Q and B* is the Q  K matrices. Note that , that is, the 
reduced form residuals can be interpreted as the result of linear combinations of exog-
enous shocks that are not contemporaneously (in the same instant of time) correlated. 
It means that the reduced form representation does not allow to identify the effects of 
exogenous independent shocks onto the variables (the matrix  is not diagonal)2. 

2.2 Fixed Effect (FE) Model

The model with fixed effect can be defined expanding the pooling model. To take into 
account the fixed effect we need to define a N  Q matrix of individual effects  
where  is the individual effect of unit i in the equation j. Then we can consider it as 
more one set of parameters. The inclusion of  in the model can be done in such way 

,                                                                                          (5)

where iT is a T 1 vector with all the elements equal to one. The set of regression in (5)  
can be accommodate in a more compact framework based in the following procedures 

 or

,                                                                                                   (5’)

where  and Z is TN  (N+K), and  where B is (N+K)  Q.

Because , it means that for a sample data with larger number of units 
the estimation of matrix  can be time consuming. In the classical grounds the prob-
lem can be solved using a convenient orthogonal projection operators on (5) defined as 

 and Q = INT – P where JT = (1/T)iT i'T . In this case we have  
because . With data group by unities P transforms a vector of 

2. These shocks are primitive and exogenous forces, with no common causes, that affect the variables of the model (Sims, 1980).
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observations in a vector of group means3, i.e. Q produces a vector of deviations from 
means. In this case the OLS estimator for B

,

where X* = QX and Y* = QY. Since we have estimated B* we can retrieve the individual 
effect easily. Unfortunately, due to Q be idempotent, the variance of QU is singular, which 
limits the practicability to apply the Bayesian methods because we need the inverse of 
this matrix as we can show in section 3. 

2.3 Random Effect (RE) Model

The random effect model that we analyse in this study refers to the one known in the 
literature on panel data as the error component model. In this case the error regression is 
assumed to be composed of two independent components: one component associated with 
cross-sectional units or individuals and a second with each observation. In this case (5)  
must be interpreted in the following way

Y = XB* + V,                                                                                                (6)

where V the matrix of disturbance defined as . Here  
and . With minor differences this moldel can be considered as 
the multivariate version of the univariated Gaussian linear mixed model (Laird and Ware, 
1982). To find the variance of V it is necessary first to find the variance of . 
In this sense we have that

.

Using the following property of Mactrice Normal distribution, that is, if   
then , we have that 

3. .
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Thus  as it appears in Baltagi (1992).

2.4 Spatial FE Model

In this study the spatial dependence or autocorrelation is introduced directly from the 
data follow the methodology first proposed by Anselin (1988). Other methods could 
be used. The spatial dependence can be also model using latent component (Gamerman 
and Moreira, 2004) that incorporate spatial variation of the regression coefficients. The 
roots of this method appear in Fahmeir and Lang (2001) and Lang et al. (2003).

In order to assess spatial dependence some new elements must be introduced in the 
analysis.A standard choice is to include in the mean process a spatial autoregressive 
component that takes the spatial locations into account. This can be done by the use 
of a contiguity or neighborhood N  N matrix W* = (wij) with wij  representing the 
neighborhood between the sites i and j, such that wij ≠

 0 if the sites i and j are neigh-
bors, and wij = 0 otherwise. The standard choice is wij = 1/m where mj is the number of 
neighborhood of the unit j. This spatial weight matrix is a square matrix representing 
the spatial context. It encodes the neighborhood relationship among the spatial units. 
The literature on this subject is vast, we shall only retain here that the neighbors rela-
tionships chosen by the analyst may change the results4. In this sense equation (5’) may 
be rewritten in the following way:

Y = WY Φ + ZB + U,                                                                                     (7)

where  and W  is NT  NT and Φ is a Q  Q matrix. The form to accommodate 
spatial autocorrelation in the data specified in (8) is denoted in spatial econometrics by 
SAR.5 The special case is given when Φ is diagonal with entries Φ1  consisting 
of the spatial autoregressive coefficients. When Φ is full the non-zero elements off the 
diagonal display the effect that one endogenous variable has on the other ones, irrespec-
tive of the spatial interactions between regions. 

It is commonplace in the literature to consider spatial autocorrelation also present 
in the disturbance. In this case  which is denoted as the SEM6 model.  

4. See Anselin et al. (1988) for a detailed discussion. 
5. Spatial autoregressive model.
6. Spatial error model.
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In this study for simplicity we assume that . This simplification does not bring 
any weakness in our methodology. The methodology that we will apply to estimate the 
model with spatial autocorrelation can be extended easily to consider both specifica-
tions. We decided to include only SAR with the aim to reduce the time of computing.

3 BAYESIAN INFERENCE 

3.1 The FE model

To estimate the models treated in this study we consider the Bayesian grounds for infer-
ence. The Bayes’ theorem gives the posterior distribution as 

,

where  is the likelihood function and  is the prior distribution. 
We assume that likelyhood function is given by a matricvariate normal (Press, 1989) 
defined as follows 

.

To conduct Bayesian inference a prior distribution for  is required. We as-
sume the matricvariate normal inverse Wishart (Press, 1989) form for prior distribution, 
such as,  with density  where

,

where H0 and S0 are positive definite matrices and v0 > 0 is a real number. In others 
words conditional to , , while the marginal distribution for 

 is an inverse Wishart denoted by  with .

Due to the kernel of the likelihood function is also given by a MN distribution it is 
possible to conjugate. In this case the posterior distribution of  (product of likelihood 
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function and prior distribution) is also a MNIW such that  
while , with 

;                                                                                            (8.1)

;                                                                                                 (8.2)

;                                 (8.3)

.                                                                           (8.4)

All these conditional distributions are standard therefore the Gibbs sampling 
algorithm (Gamerman and Lopes, 2005), can be applied. Given the draw of g – 1th 
iteration, the next iteration is done by simulation

Step1       

Step 2      

This process can be iterated a larger number of times, and after discarding the 
initial transient all the subsequent draws can be used for inference. Information on 
convergence can be obtained by monitoring the serial correlation in the draws, the 
numerical standard errors of estimates based on the output of the sample and through 
the diagnostic of Gelman and Rubin (1992).

3.2 The RE model

The Bayes’ theorem gives the posterior distribution as following

.

Equation (6) provides the likelihood for RE model as

.
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In order to compose the posterior distribution we need to complement the likeli-
hood with the prior distribution

.

One reason the Bayesian methods has gained popularity is associated to the fact 
that hierarchical priors can surmount some of the problems caused by high dimensional 
parameters spaces. The random individual effect model has a parameter space. If T is 
small relative to N, the number of parameters is quite large relative to sample size. This 
suggests that a hierarchical prior might be appropriate and is indeed the case that such 
priors are commonly used. A convenient hierarchical prior proposed to dealing with 
the term associated to random effect  assumes that

.

The hierarchical structure of the prior arises if  have its own prior. We define the prior 
distribution for  through 

.

For the remaining parameters, we assume a non-hierarchical prior of the independent 
Normal-Wishart variety

One can apply Gibbs sampling to each block parameters, increasing the sampler 
with draws for . Due to the conditional Gaussian structure,  
where . This implies that the posterior distribution 
of B conditional to  and  is  where

                                                                                (9.1)

and .                                                                         (9.2)

In order to find the conditional posterior distribution for random effect  we first 
apply the vec operator on (6) such as , where ,  
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,  and . Letting  this posterior distri-
bution is given such as  with  

           (9.3)

and .                                                                              (9.4)

The posterior precision matrix for random effect  is simulated from an invert 
Wishart,  with 

                                                                                           (9.5)

and .                                                                                           (9.6)

Finally the posterior distribution for precision error  is also given by an invert 
Wishart  with

                            (9.7)

and .                                                                                      (9.8)

Thus the sampler takes the following form

1.	 Simulate  and  from  by sampling

(i)   ;

(ii)   

2.	 Simulate  from ; 

3.	 Simulate  from ; and

4.	Repeat steps 1-3 for a large number of interactions, after to burn the initial 
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iterations, to sumarize the posterior density.

3.3 Spatial FE model 

In the first step the likelihood function is required. Based on eq. (8) this function can 
be written as follow

.

This likelihood function can be combined with a prior for , 
. Here the prior distribution for  

is the same used in FE model, . When  is a diagonal 
matrix is reasonable to assume the elements  of the diagonal are i.i.d. with  
for all i. Hence, 

.                                                                                        (10)

The condit ional  poster ior  for   i s  known and i t  i s  g iven by 
 with 

;                                                                                      (11.1)

;                                                                           (11.2)

;                                                                                               (11.3)

and .                          (11.4)

Because the posterior conditional distribution for  is not analitically tractable, 
we shall employ `Metropolis-Hastings sampling’ algorithm (Dagpunar, 2007) to gener-
ate drawings from it. Thus, the MCMC sampler combines Gibbs and M-H algorithms 
and must be employed in two stages. In the first stage the posterior distribution for 

 conditional on  is draw by Gibbs sampling. For each g-iteration can be done by 
simulation in the following way. 
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Step 1.      Draw  from  using MH algorithm;

Step 2.      Draw  from 

where .

In the second stage, the M-H algorithm works as follows. Given  the 
state at the next step is  with probability , or remains unchanged 
at   with probability . Here the candidate the  is sampling from a 
proposal density . The acceptance probability is 

,                                             (12)

where . Set , if  then , otherwise 
. To implement M-H algorithm it is necessary that a suitable candidate for 

proposal density be specified. A suitable choice for q might be 

,

that is, given , . Other specifications can be select from a family of 
distribution. There is a vast discussion in the literature about how this choice could be 
made (Dagpunar, 2007; Robert and Casella, 2004; Chib and Greenberg, 1995).

3.4 Spatial RE model

The strategy to implement Bayesian inference in a multivatriate model with random 
effects is much more complicate. We can write the special RE model as:

,                                                                                   (13)

where V the matrix of disturbance defined as ,  
and . 

Following the Bayes theorem we have:



Discussion 
Paper

2 1 4

19

Spatial Multivariate Regressions with Panel Data

.                          (14)

The likelihood function of equation (14) is given by

.

To build the posteriori function we should combine de likelihood function above 
with the a priori function for the parameters , that is,

.

In relation to  we can use the same set of priori distributions that we 
use before in section 3.2 where , ,  and 

, for  we use the specification described in (10). 

Since we have defined the a priori distribution, and the posteriori distribution we 
have that the Gibbs sample assume the following format ,  

,  and  with 
the hyperparameters stated in equations 9.1 – 9.8. For the estimation of the parameter 

, we follow the M-H algorithm. 

3.5 Simulation Exercise

To evaluate the possibilities for conducting inference, it is necessary to first consider the 
performance of our Bayesian methodology with artificial data. For the sake of brevity, 
we present results here for only one simulated data set. We generate an artificial data 
with  individual units,  time periods,  regressors and  endogenous 
variables (equations). The explanatory variables in the 490  2 (NT  k) matrix were 
generated from N(0,1) distribution. The spacial dependence matrix W was obtained 
in accordance to section 2.4. Finally, the set of parameters  is taken to be 
equal to 
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,
 

 and .

We show in the following that the algorithm successfully recovers the true pa-
rameters. The Table 1 presents the median, the standard deviation of the posterior 
distribution for all parameters obtained from MCMC algorithm. We note the poste-
rior means are all near the true values and the true values are always contained in the 
central interval covering 95% of the posterior mass. We also apply the convergence 
diagnostics for the parameter chains generated to estimate the above parameters. The 
Gelman-Rubin statistics R is applied to multiple chains to verify convergence that 
occurs when R is close to 1, below a critical level. The independent chains were run 
20,000 times. In all cases the chains converged to its invariant measure around the true 
parameter. Finally, simulated data allows us to verify that all parameters are identified 
and precise inference can be conduced on the basis of a sample that is of magnitude 
likely to occur in practice. 

TABLE 1
Spatial RE Model – results of MCMC for 20000 interactions

θ True E(θ) S.D(θ) R θ True E(θ) S.D(θ) R

σ2
11 0.0500 0.0468 0.0049 1.0004 σ2

α11 1.0000 1.2339 0.2627 1.0004

σ2
21 -0.0100 -0.0052 0.0036 0.9999 σ2

α21 0.5000 0.7397 0.2161 1.0003

σ2
31 -0.0100 -0.0074 0.0033 1.0000 σ2

α31 0.5000 0.6662 0.2013 1.0001

σ2
41 -0.0100 -0.0094 0.0035 0.9999 σ2

α41 0.5000 0.5098 0.1712 1.0006

σ2
12 -0.0100 -0.0052 0.0036 0.9999 σ2

α12 0.5000 0.7397 0.2161 1.0003

σ2
22 0.0500 0.0509 0.0052 1.0001 σ2

α22 1.0000 1.2862 0.2723 1.0003

σ2
32 0.0200 0.0184 0.0037 1.0001 σ2

α32 0.5000 0.6373 0.2044 1.0001

σ2
42 0.0200 0.0223 0.0039 1.0002 σ2

α42 0.5000 0.5527 0.1750 1.0000

σ2
13 -0.0100 -0.0074 0.0033 1.0000 σ2

α13 0.5000 0.6662 0.2013 1.0001

(Continues)
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θ True E(θ) S.D(θ) R θ True E(θ) S.D(θ) R

σ2
23 0.0200 0.0184 0.0037 1.0001 σ2

α23 0.5000 0.6373 0.2044 1.0001

σ2
33 0.0500 0.0432 0.0045 1.0006 σ2

α33 1.0000 1.1476 0.2416 1.0001

σ2
43 -0.0300 -0.0245 0.0037 1.0005 σ2

α43 0.5000 0.6412 0.1746 1.0000

σ2
14 -0.0100 -0.0094 0.0035 0.9999 σ2

α14 0.5000 0.5098 0.1712 1.0006

σ2
24 0.0200 0.0223 0.0039 1.0002 σ2

α24 0.5000 0.5527 0.1750 1.0000

σ2
34 -0.0300 -0.0245 0.0037 1.0005 σ2

α34 0.5000 0.6412 0.1746 1.0000

σ2
44 0.0500 0.0473 0.0048 1.0004 σ2

α44 1.0000 0.8550 0.1805 1.0002

β11 -0.5000 -0.5111 0.0145 1.0007 φ11 0.3000 0.3257 0.0218 1.0078

β 21 0.2000 0.2200 0.0154 1.0002 φ22 0.4000 0.3938 0.0091 1.0127

β 12 0.1000 0.0987 0.0155 1.0000 φ33 -0.5000 -0.5029 0.0132 1.0046

β 22 0.8000 0.7963 0.0158 1.0004 φ44 0.6000 0.5998 0.0069 1.0014

β13 -0.3000 -0.3170 0.0149 1.0000

β23 0.6000 0.5885 0.0154 1.0000

β 14 -0.8000 -0.7788 0.0151 1.0001

β 24 0.3000 0.3097 0.0157 1.0001

4 COMPARISON BETWEEN MODELS

The estimation of the random effect model in the Bayesian multivariate spatial model 
is time consuming, and the implementation of the MCMC algorithm is not trivial. 
Particularly, the calibration procedure of the prior parameters related to the spatial 
correlation is a delicate process. This problem is cumbersome in high dimensionali-
ties samples. In this way, a relevant question is related to simplify the problem to a 
tractable dimension. For the empirical researcher the fundamental question is related 
to the values of both the parameters associated with the explicative variables (b´s) and 
the spatial correlation coefficients (φ’s). That is, can alternative models like MS models 
(Gamerman and Moreira, 2004), that are less time consuming, generate coefficients 
similar to our estimator?

Table 2 describes the alternative methodologies that will be compared. We are 
going to generate data from an artificial model elaborated from four endogenous vari-
ables and two regressors. In all those models the spatial autocorrelation is represented 
by a diagonal matrix.

(Continued)
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TABLE 2
Alternative methodologies

Models Econometric specification

Model 1 - MSRE Multivariate Spatial Regression with Random Effect (Section 3.4)

Model 2 to 5 - US Univariate Spatial Regression without Random Effect

Model 6 - MS Multivariate Spatial Regression without Random Effect 
 (Gamerman and Moreira, 2004)

Model 7 to 10 - USRE Univariate Spatial Regression with Random Effect

Tables 3 to 5 compare the accuracy and efficiency from different models and 
specifications. The analysis of the parameters of interest [[(β’s), (φ’s)] shows the gains 
associated to the use of our methodology.

TABLE 3
MSRE x Univariate Spatial Regression without Random Effect

Model 1 Model 2 Model 3 Model 4 Model 5

θ True E(θ) S.D(θ) E(θ) S.D(θ) E(θ) S.D(θ) E(θ) S.D(θ) E(θ) S.D(θ)

σ2
11 0,0500 0,0468 0,0049 0.7149 0.0684

σ2
21 -0,0100 -0,0052 0,0036

σ2
31 -0,0100 -0,0074 0,0033

σ2
41 -0,0100 -0,0094 0,0035

σ2
12 -0,0100 -0,0052 0,0036

σ2
22 0,0500 0,0509 0,0052 0.8289 0.0802

σ2
32 0,0200 0,0184 0,0037

σ2
42 0,0200 0,0223 0,0039

σ2
13 -0,0100 -0,0074 0,0033

σ2
23 0,0200 0,0184 0,0037

σ2
33 0,0500 0,0432 0,0045 0.7803 0.0716

σ2
43 -0,0300 -0,0245 0,0037

σ2
14 -0,0100 -0,0094 0,0035

σ2
24 0,0200 0,0223 0,0039

σ2
34 -0,0300 -0,0245 0,0037

σ2
44 0,0500 0,0473 0,0048 0.4554 0.0446

β11 -0,5000 -0,5111 0,0145 -0.493 0.0497

β21 0,2000 0,2200 0,0154 0.311 0.0539 0.0575 0.0553

β12 0,1000 0,0987 0,0155 0.8044 0.0575

β22 0,8000 0,7963 0,0158 -0.3138 0.0580

β13 -0,3000 -0,3170 0,0149 0.5932 0.0525

β23 0,6000 0,5885 0,0154 - 0.0401

β14 -0,8000 -0,7788 0,0151 0.7009

β24 0,3000 0,3097 0,0157 0.2906 0.0434

(Continues)
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Model 1 Model 2 Model 3 Model 4 Model 5

θ True E(θ) S.D(θ) E(θ) S.D(θ) E(θ) S.D(θ) E(θ) S.D(θ) E(θ) S.D(θ)

φ11 0,3000 0,3257 0,0218 0.728 0.0357

φ22 0,4000 0,3938 0,0091 0.7307 0.0341

φ33 -0,5000 -0,5029 0,0132 0.2529 0.0668

φ44 0,6000 0,5998 0,0069 0.8568 0.0209

σ2
11 1,0000 1,2339

σ2
21 0,5000 0,7397

σ2
31 0,5000 0,6662

σ2
41 0,5000 0,5098

σ2
12 0,5000 0,7397

σ2
22 1,0000 1,2862

σ2
32 0,5000 0,6373

σ2
42 0,5000 0,5527

σ2
13 0,5000 0,6662

σ2
23 0,5000 0,6373

σ2
33 1,0000 1,1476

σ2
43 0,5000 0,6412

σ2
14 0,5000 0,5098

σ2
24 0,5000 0,5527

σ2
34 0,5000 0,6412

σ2
44 1,0000 0,8550

TABLE 4
MSRE x Multivariate Spatial Regression without Random Effect

Model 1 Model 6

θ True E(θ) S.D(θ) E(θ) S.D(θ)

σ2
11 0,0500 0,0468 0,0049 0.6788 0.0623

σ2
21 -0,0100 -0,0052 0,0036 0.3993 0.0548

σ2
31 -0,0100 -0,0074 0,0033 0.2929 0.0508

σ2
41 -0,0100 -0,0094 0,0035 0.1969 0.0379

σ2
12 -0,0100 -0,0052 0,0036 0.3993 0.0548

σ2
22 0,0500 0,0509 0,0052 0.8044 0.0739

σ2
32 0,0200 0,0184 0,0037 0.3989 0.0576

σ2
42 0,0200 0,0223 0,0039 0.2318 0.0418

σ2
13 -0,0100 -0,0074 0,0033 0.2929 0.0508

σ2
23 0,0200 0,0184 0,0037 0.3989 0.0576

σ2
33 0,0500 0,0432 0,0045 0.7838 0.0721

σ2
43 -0,0300 -0,0245 0,0037 0.2279 0.0412

σ2
14 -0,0100 -0,0094 0,0035 0.1969 0.0379

σ2
24 0,0200 0,0223 0,0039 0.2318 0.0418

σ2
34 -0,0300 -0,0245 0,0037 0.2279 0.0412

σ2
44 0,0500 0,0473 0,0048 0.4378 0.0405

(Continues)
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Model 1 Model 6

θ True E(θ) S.D(θ) E(θ) S.D(θ)

β11 -0,5000 -0,5111 0,0145 -0.4803 0.0493

β 21 0,2000 0,2200 0,0154 0.2751 0.0517

β 12 0,1000 0,0987 0,0155 0.0537 0.0537

β 22 0,8000 0,7963 0,0158 0.7762 0.0568

β13 -0,3000 -0,3170 0,0149 -0.3099 0.0527

β23 0,6000 0,5885 0,0154 0.5895 0.0549

β 14 -0,8000 -0,7788 0,0151 -0.6806 0.0399

β 24 0,3000 0,3097 0,0157 0.2707 0.0418

φ11 0,3000 0,3257 0,0218 0.9081 0.0351

φ22 0,4000 0,3938 0,0091 0.8244 0.0311

φ33 -0,5000 -0,5029 0,0132 0.4016 0.0687

φ44 0,6000 0,5998 0,0069 0.9301 0.0223

σ2
α11 1,0000 1,2339

σ2
α21 0,5000 0,7397

σ2
α31 0,5000 0,6662

σ2
α41 0,5000 0,5098

σ2
α12 0,5000 0,7397

σ2
α22 1,0000 1,2862

σ2
α32 0,5000 0,6373

σ2
α42 0,5000 0,5527

σ2
α13 0,5000 0,6662

σ2
α23 0,5000 0,6373

σ2
α33 1,0000 1,1476

σ2
α43 0,5000 0,6412

σ2
α14 0,5000 0,5098

σ2
α24 0,5000 0,5527

σ2
α34 0,5000 0,6412

σ2
α44 1,0000 0,8550

TABLE 5
MSRE x Univariate Spatial Regression with Random Effect

Model 1 Model 7 Model 8 Model 9 Model 10

θ True E(θ) S.D(θ) E(θ) S.D(θ) E(θ) S.D(θ) E(θ) S.D(θ) E(θ) S.D(θ)

σ2
11 0,0500 0,0468 0,0049 0.0462 0.0047

σ2
21 -0,0100 -0,0052 0,0036

σ2
31 -0,0100 -0,0074 0,0033

σ2
41 -0,0100 -0,0094 0,0035

σ2
12 -0,0100 -0,0052 0,0036

σ2
22 0,0500 0,0509 0,0052 0.0507 0.0052

σ2
32 0,0200 0,0184 0,0037

σ2
42 0,0200 0,0223 0,0039

σ2
13 -0,0100 -0,0074 0,0033

σ2
23 0,0200 0,0184 0,0037

σ2
33 0,0500 0,0432 0,0045 0.0483 0.0049

σ2
43 -0,0300 -0,0245 0,0037

(Continued)
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Model 1 Model 7 Model 8 Model 9 Model 10

θ True E(θ) S.D(θ) E(θ) S.D(θ) E(θ) S.D(θ) E(θ) S.D(θ) E(θ) S.D(θ)

σ2
14 -0,0100 -0,0094 0,0035

σ2
24 0,0200 0,0223 0,0039

σ2
34 -0,0300 -0,0245 0,0037

σ2
44 0,0500 0,0473 0,0048 0.0517 0.0054

β11 -0,5000 -0,5111 0,0145 -0.5106 0.0144

β 21 0,2000 0,2200 0,0154 0.2196 0.0149

β 12 0,1000 0,0987 0,0155 0.1004 0.0151

β 22 0,8000 0,7963 0,0158 0.7916 0.0159

β13 -0,3000 -0,3170 0,0149 -0.3163 0.0149

β23 0,6000 0,5885 0,0154 0.5907 0.0152

β 14 -0,8000 -0,7788 0,0151 -0.7775 0.0154

β 24 0,3000 0,3097 0,0157 0.3057 0.0162

φ11 0,3000 0,3257 0,0218 0.3169 0.0279

φ22 0,4000 0,3938 0,0091 0.4366 0.0185

φ33 -0,5000 -0,5029 0,0132 -0.4809 0.0304

φ44 0,6000 0,5998 0,0069 0.6268 0.0179

σ2
α11 1,0000 1,2339 1.2556 0.2712

σ2
α21 0,5000 0,7397

σ2
α31 0,5000 0,6662

σ2
α41 0,5000 0,5098

σ2
α12 0,5000 0,7397

σ2
α22 1,0000 1,2862 1.1959 0.2517

σ2
α32 0,5000 0,6373

σ2
α42 0,5000 0,5527

σ2
α13 0,5000 0,6662

σ2
α23 0,5000 0,6373

σ2
α33 1,0000 1,1476 1.1219 0.2362

σ2
α43 0,5000 0,6412

σ2
α14 0,5000 0,5098

σ2
α24 0,5000 0,5527

σ2
α34 0,5000 0,6412

σ2
α44 1,0000 0,8550 0.7888 0.1696

5 APPLICATION: IS THE CATTLE RANCHING RESPONSIBLE  
FOR DEFORESTATION IN THE BRAZILIAN AMAZON?  
NEW EVIDENCES 

5.1 The Land-Use Model for the Brazilian Amazon

Over the past two decades the international community has become aware of the global 
and regional environmental risks associated to possible massive forest losses in the 
Brazilian Amazon. The impacts on global carbon cycle, regional climate and the loss of 

(Continued)
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biodiversity are among the main consequences of extensive land-use change processes 
in this region. Therefore a good understanding of land-use dynamics in the Brazilian 
Amazon is a fundamental step before action whether controlling the problem or even 
changes its course towards a more sustainable path.

Econometric and statistical methods have been used with the objective to deter-
mine the main dynamical features between succeeding anthropogenic land-use sequence 
(Soares-Filho et al., 2006; Reis and Blanco, 1997; PFAFF, 1999; Reis and Guzmán, 1994, 
inter allia). In order to seek for deforestation drivers, it is important to know up to what 
extent, in past deforestation trends, cropland or pastures uses are more or less keen to 
immediately follow deforestation. Several studies have already contributed to a better 
understanding of the underlying processes that drive land-use change in the Amazon.

Andersen et al. (2002; 1997) estimated a model to evaluated the dynamic of land 
use of Brazilian Amazon over the period 1970 through 1985. But some caveats can be 
posed about this model. A first difficulty lies in the fact that spatial heterogeneity among 
cross-section units (municipalities) has not to be taken into account in order to con-
template the geographic, environmental and economic diversity among those different 
units and the effect of their mutual interactions. In this case, the heterogeneity among 
units can be contemplated using an appropriated panel data7 structure. Second, land-use 
is clearly a spatial process that results from the complex interplay of many phenomena 
occurring in a much extended spatial domain, it is obviously a spatial phenomenon and 
we may expect spatial autocorrelation to be present in the data. These two points were 
not appropriated treated by Andersen et al. (2002; 1997).

The objective of this section is to apply the methodology developed in this paper 
to estimate the dynamic of land-use for Brazilian Amazon taking into account the issues 
pointed out in last paragraph. For that we follow the study undertaken by Andersen et 
al. (2002; 1997) where these authors model the dynamic land-use in Amazon using a 
vector autoregressive. Notwithstanding our study differently considers that all the issues 
pointed out above deserve to be correctly considered in the same model. In this case the 
approach used by Andersen et al. (2002; 1997) must be reformulated in order to take 
into account the panel data structure of the data base and spatial dependence. 

7. Important sources of variation may be left out if the data is only pooled in a single (temporal or spatial) dimension, and 
more precise parameter estimates can be obtained in panel approaches that explore the variability present in the data both 
across counties and within counties over time.
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Hence, we propose to use a panel data vector autoregressive PVAR8 with spatial 
autocorrelation to estimate the land-use model of Brazilian Amazon. This model can 
be seen as a particular case of the model studied in sections 3.4 and 3.5 that assumes 
the following specification

                                                                                     (15’)

where  and V, the matrix of disturbance, is defined such as .  
Here  and . 

This is a one order lag spatial PVAR with random effect. The vector of endogenous 
variables is given by yit = (forestit, pastureitit, fallowit, cropit)'. In this vector each variable 
represents one category of land-use that is explained in the next section. To summarize, 
our model tries to explain the evolution of land-use in Brazilian Amazon over time by 
the following factors: the heterogeneity among cross-section units (municipalities) due 
to the geographic, environmental, the sources of spatial interactions among municipali-
ties and economic diversity among those different units and the state of the land-use 
occupation in the last period.

5.2 Database

The database available for this study comes from Brazilian National Agriculture Census 
elaborated by the Brazilian Institute for Geography and Statistics (IBGE) which is usu-
ally conducted every five years. Others original data sources used are the Industrial and 
Commercial Census that were also elaborated by the IBGE for the same periods. The 
data were collected for the following for years 1970, 1975, 1980, 1985 and 1995 at the 
municipality level. The data were cleaned, harmonized and merged with data of other 
sources by the Ipea (Institute for Applied Economic Research) managed by the team of 
Ipeadata.9 The original database includes data on economic, demographic, ecological 
and agriculture variables.

In the Brazilian Amazon Basin a county can be subjected to ongoing change in 
its size mainly during the expansion of the agricultural frontier in Amazon. This fact 
obstructs the comparison between periods at county level. That is why the concept of 

8. Panel vector autoregressive.
9. Available at: <http://www.ipeadata.gov.br>.
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Minimum Comparable Area (MCA)10 was introduced, which is the smallest stable spatial 
unity during these five censuses that accommodates the changing county boundaries 
over the panel. The aggregation of counties in the later census years, in order to match 
the county area in 1970, is greatest in the more recently populated and sub-divided 
regions found in the legal Amazon.

The agricultural censuses group all land into private land and public land. Private 
land is stratified into eight categories according to agricultural use. These are i) annual 
crops; ii) perennial crops; iii) planted forest; iv) planted pasture; v) short fallow; and 
vi) long fallow are classified in cleared land; while vii) natural forest and natural pasture 
are considered non-cleared land. A small category of private non-usable land (rivers, 
mountains, etc.) is also considered non-cleared land. Finally, all land that is not claimed 
by anyone is considered public land and by definition non-cleared. 

Based on these definitions the dependent variables used in our land-use model 
fall into one of the following four categories: cropland (crop), pasture (pasture), fallow 
(fallow) and natural land (forest). Cropland covers annual crops, perennial crops and 
planted forest. Pasture is planted pasture only. Fallow land includes short fallow, long 
fallow and non-usable land like roads, dams, etc. Finally, natural land considers natural 
forest and natural pasture. 

5.3 Results and Analysis

We now apply the Bayesian methods to the data set described in the last section. This 
land-use data set contains N=X individual MCA, T=5 time periods and Q=4 endog-
enous variables (forest, pasture, fallow and crops). In Table 6 we present the estimated 
results of the model (15’). The sequence of the endogenous variable is the same that 
appears in vector yit in section 4.1. In this table the estimated coefficients can be read 
in the following way: �u = [σ2

ij], � = [ϕij], and B = [βij]. For instance, the coefficient β21 
means the effect of one unit change of forest area in the last period on the occupation 
of the current area of pasture. The logit transformation was applied to the variables to 
become the hypothesis of error normality acceptable.11 Table 6 presents the median, 
standard deviation and the 0.025 and 0.975 quantiles of the posterior distribution for 
all parameters. Evidence on convergence in accordance to statistics R is shown.

10. For further details about the concept of MCA see Reis et al. (2007).
11. If x is the proportion of an area in a certain region and time, this amount is converted to y = h (x/1–x).
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It can be seen from table 6 that matrix  has not non-zero elements. It implies that 
the spatial interaction plays important role in the process of land-use in the Amazon. 
Results reported in this table also show that wood extraction does not seem to affect 
agricultural activities since the zero belongs to the confidence interval for the posterior 
distribution of β41, i.e., this coefficient is concentrated around zero. Looking the coef-
ficient β 44 in crops equation also reveals that the current expansion of agricultural activi-
ties strongly induces to an increasing in the area of crop in the future. A weak positive 
relation is observed between agriculture and cattle in the sense that expansion of cattle 
weakly affect the future increasing in the area of crops. But, the reverse is not true. 
The coefficient β24 is 0.16 while the coefficient β42 is 0.02. It can indicate some form of 
complementarity between these activities in the sense that more agriculture induces to 
the future need of more area of cattle. 

Finally, differently from the common wisdom we do not any find evidence that 
cattle ranching are an important driver of deforestation. The analysis of forest equation 
shows that deforestation is guide by itself. In other words, the deforestation is connected 
to any other economic activity. It is important to note that agriculture is indeed a fac-
tor that does not reduces deforestation in the view that the coefficient Β14 is negative.

TABLE 6
Spatial RE Model - Results of MCMC for 20000 interactions

Quantil Quantil

θ E(θ) S.D(θ) 2,5% 97,5% R θ E(θ) S.D(θ) 2,5% 97,5% R

σ2
11 2.00 0.10 1.84 2.16 1.00 σ2

11 0.19 0.06 0.11 0.29 1.00

σ2
21 -2.13 0.16 -2.39 -1.87 1.00 σ2

21 0.01 0.07 -0.12 0.11 1.00

σ2
31 -0.61 0.15 -0.86 -0.36 1.00 σ2

31 0.10 0.10 -0.07 0.27 1.00

σ2
41 -0.04 0.03 -0.09 0.01 1.00 σ2

41 -0.02 0.03 -0.06 0.03 1.00

σ2
12 -2.13 0.16 -2.39 -1.87 1.00 σ2

12 0.01 0.07 -0.12 0.11 1.00

σ2
22 8.41 0.40 7.76 9.08 1.00 σ2

22 0.57 0.19 0.29 0.90 1.00

σ2
32 0.59 0.31 0.09 1.10 1.00 σ2

32 0.56 0.21 0.23 0.91 1.00

σ2
42 0.13 0.06 0.03 0.23 1.00 σ2

42 -0.18 0.06 -0.27 -0.09 1.00

σ2
13 -0.61 0.15 -0.86 -0.36 1.00 σ2

13 0.10 0.10 -0.07 0.27 1.00

σ2
23 0.59 0.31 0.09 1.10 1.00 σ2

23 0.56 0.21 0.23 0.91 1.00

σ2
33 9.06 0.48 8.30 9.86 1.00 σ2

33 1.50 0.38 0.90 2.16 1.00

σ2
43 0.30 0.06 0.19 0.41 1.00 σ2

43 -0.28 0.07 -0.40 -0.16 1.00

σ2
14 -0.04 0.03 -0.09 0.01 1.00 σ2

14 -0.02 0.03 -0.06 0.03 1.00

σ2
24 0.13 0.06 0.03 0.23 1.00 σ2

24 -0.18 0.06 -0.27 -0.09 1.00

σ2
34 0.30 0.06 0.19 0.41 1.00 σ2

34 -0.28 0.07 -0.40 -0.16 1.00

σ2
44 0.35 0.02 0.32 0.38 1.00 σ2

44 0.22 0.03 0.18 0.27 1.00

(Continues)
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Quantil Quantil

θ E(θ) S.D(θ) 2,5% 97,5% R θ E(θ) S.D(θ) 2,5% 97,5% R

β11 0.23 0.03 0.18 0.27 1.00 φ11 0.07 0.01 0.05 0.08 1.03

β 21 0.09 0.01 0.07 0.11 1.00 φ22 0.06 0.01 0.04 0.07 1.01

β 12 0.02 0.01 0.00 0.04 1.00 φ33 0.06 0.01 0.05 0.07 1.01

β 22 -0.20 0.03 -0.24 -0.15 1.00 φ44 0.03 0.00 0.02 0.03 1.00

β13 0.35 0.06 0.26 0.44 1.00

β23 0.23 0.03 0.18 0.28 1.00

β 14 0.12 0.02 0.08 0.16 1.00

β 24 0.16 0.06 0.06 0.25 1.00

β11 0.42 0.06 0.32 0.52 1.00

β 21 0.21 0.03 0.16 0.27 1.00

β 12 0.11 0.03 0.07 0.15 1.00

β 22 0.83 0.07 0.73 0.94 1.00

β13 0.01 0.01 -0.01 0.03 1.00

β23 0.02 0.01 0.01 0.03 1.00

β 14 0.02 0.01 0.01 0.03 1.00

β 24 0.76 0.02 0.73 0.79 1.00

6 FINAL COMMENTS

We develop a new Bayesian estimator that is able to deal with multivariate panel data 
structure in the presence of spatial correlation. The Monte Carlo simulations demonstrate 
the ability of this new estimator to replicate quite well simulated data.

To show the empirical relevance of this new estimator we apply it to deforestation 
data in the Brazilian Amazon. The empirical results suggest that differently from the 
common wisdom we do not find any evidence that cattle ranching are an important 
driver of deforestation.
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