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1 INTRODUCTION 

Most post-war analysis of economic growth has proceed 

ed in terms of capitaloutput. ratios, whether with the assumption 

of fixity in these coefficients (as in the modeis of Harrod and 

Domar) or without it (as in those of Solow 5  Swan 	Meade and 

Uzawa) This is a fairiy useful approach for analyzing growth 

by means o.f investment in fixed capital, for it leads to the 

very simple formula of Harrod (* 

(Li) L 1  'L. 
YK Yk 

which states that iÍ' there is a fixed capital-output ratio 

k = K/Y (hei-ice a marginal capital-output ratio equal to the 

average) and if there is a constant average (hence also marginal) 

propensity to save 	s = s/Y, and finaily if saving is always 

transformed into net investment (S=AK), then the warranted 

rate of growth g is equal to the propensity to save divided 

by the capital-output ratio. For example, if the capital- 
1 

output ratio is k = 3 	and the propensity tosave is 

s = 0.2, then the warranted rate of growth is g = .06 or six 

per cent, 

(*) - R F Harrod : Towards a Dynamic Economicsrt 
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This formula can be stated somewhat differently alsõ. 

If an investment is undertaken and the resulting capital equip-

ment is perfectly durable (or else maintained intact by replace 

ment), then the consequence of:an investment of zi K in year O 

is a perpetual sequence of returns J Y,  /J Y, .. in succeeding 
years. The reciprocal of tho capital-output ratio is therefore 

simpl7 the rate 0±' return r 	J Y/ Z K l/k, or "average social 
rate of return" in Domar'ste±minology (). Harrod's formula 

can therefore be restated as 

(l2) 	g = rs. 

In the above example, a capitai-output ratio of 3 

would correspond to a rate of return of 30%.  It isthe 

purpose of ti-ie present paper to show that formula (12) holds 

quite generaily; moreover it will he shown that there exist 

certain natural conditions accorciing to which, in conformity 

to Solows result as opposed to those of Harrod, the grõwth 

path will be stable, in the sense that the growth process will 

tend to converge towarcis it. 

This revised formulation has the adventage of making 

possible a comparison of different types of investment projects, 

including such projecta as investment in education which cannot 

be analyzed very successfully in terms of capital-output ratios. 

The result that we otitain also gives strong support to the rate-

of-return approach in evaluating alternative investment projects. 

II. THE RATE OF RETURN 

1 shall confine myself at first to consideration of 

ivestment projects charactorized by a sinle initial investment 

of ano u.nit followed by a finite sequence of positive returns 

a i tn the ensuing years: 

(*) - Evsey Domar Essays on Capital and Growth 
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(2.1) 	-1, a1 , a2 , ..., a 

Later 1 shali consider more complicated cases, but it 

will be instructive to analyze this case first. The rate o± 

return is defined - fo11o:ing Fïsher(*)_ •as the largest inter-

est rate r1  for which the present value of this sequence o±' 

costs and returns vanisleâ: 
a1 	a2 	a 

(2.2) V (1+r) 	-1+ -- + 	2 + • 	+ = O 
1+r (i+r) 	(1+r) 

This is equivalent to saying that the return factor I+r1  is the 

largestroot of the polynomial 

(2.3) 	f(1+r)=(1+r)'1 	a(1+r) 	- a2(1+r) 2 	a 

One obvious reason for choosing the largest o±' the n roots 

of this polynomial is that, since õbviously V(l+r) is negative 

for sufficiently large r, it ±'oliows by continuity that it is 

negative for ali r greaterthan r1 , and positive for ali r 

in the interval r2  Jr / r1 , where 1+r2  is Lhe next largest 

real root of the polynomial f(1+r). Now since the sequence 

(2.1) contans oniy one change of sign, it foliows by Descartes' 

Rule of Signs (**) that f(l+r) has exactly one positive root. 

Now only the positive roots 1+r generaily have any econoiaic 

ineaning, for a lender cannot lose nore than the total arnount 

lent, and the case in which the fuil amount lent was lost would 

correspond to a zero interest factor l+r = O, that is a rate 

(*) Irving Fisher The Theory of Interest, and The Nature of 
Capital and income. Fisher somewhat care- 
lesaly defined the internal rate of return 
(or "rate of return over oõst" in his termi 
nology) as being "that interest rate" for 
which the present value of the seoience oÍ' 
yields would be equal to the initial cost. 
The sarne was done by J.N. Keynes iii the 
General Theory when defining the marginal 
efficiency of capital. The reason for 
choosing the largest interest rate will be- 
come obvious presently. 

(**) Cf., for example, Louis Weisner : Introduction to the 
Theory of Equations. New York: The Nac1Ii11an Co., 1938, 
pp. 88-9 
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of interest of -100%. TliÍs remains true of the real rate of 

interest during a period o± inflation., since if i is the 

market rate of interest and p the rate of inflation, then 

one doilar invested now wiÍ1 becoxae l+i dollars in the follow-

ing year, but this quantity will have suffered a fali in pur-

chasin.g power of lOOp% and cõnsequently be worth only 

l+j .1+i-p 
1+p 

in constant doliars. As thç rate of inflation approaches 

infinity, 1 + r approaches zero and r aproaches the niinimum 

possible value of -1. Thus for ali conceivable real ratos of 

interest r, the project repesented by (2.1) will be profitable 

whenever the interest rate iá less than the rate o± return, and 

unproíitabie otherwise. 

The above discussion has bearing on the question of 

how an effici.ent aliocation of saving can be achieved by means 

ol' a capital market, providedtbecriterion of evaluating a 

project bythe rate of return can be justified on independent 

grounds. It is the latter question which is the object of 

interest in the discussion to foilow. 

III. THE ROfl4 PROCESS 

1 shall assume that the gross national product in year 

t, 	can be dividedinto two parts: an autonomous part Z 

which is assumed to be constant, and an induced part which 

consists of the returns from previous gross investrnents Gt_ 

c.rried out i years earlier, i = 1, 2, ..., n. The returns 

a i of (2.1) will be interpreted as being net ci' any main-

tenance expenses, but exciuding depreciation on fixed capital 

that ni.ust be replaced. Assuming that a is the constant 

proportion of the return in any year t te the gross •investrn.ent 



5. 

Gt_j Ï years previously,. the gross national product in year t 

will be 

(3.1) 	P= Z + a 1  G11 + a2Gt_2 + .... + aGt_n. 

Similarly, let us assume than the depreciation of a gross 

capital investinent if one unjt is spread out during the sub-

sequent n years of lif e of the capital according te the 

sequence 

(3.2) 	-1, d1 , d21  .. 

whe re 

(3.3) 	d1  + d + ••• + d = 1. 

Then iii any year t tbe depreciation expense Dt o±' that year 

will be a snapshot consisting of the depreciation expenses 

di G. , assumeci te be a constan.t proportion of the previous 

gross investrnents: 

(3.4) 	Dt = di  G 1  + d2  Gt2 + ... + d Gt_ 

I'Tet national product in year t is therefore given by 

(3.5) Yt=Pt_Dt=Z+( a1_di)Gt_i + (a2-d2 ) Gt_2 + ia. ~ 

Now let net investment I 

of the current net national product 

average propensity te save: 

(3.6) 	It = sY.t. 

Gross investnient is tben 

be a fixed proportion s 

where s is the fixed 

(3.7)Gt 
 =I 

t  + D4= 	t+diGt_i + d2Gt_2 + ... 

Prom (3.5) we .may replace t successively by t-1, t-2, ... ,t-n 

and multiply through respectively by -d1 , -d2 , ..., 

te obtain the equations 

YtZ+(ai-.di) G.1 ._1  + (a2-d2) Gt2 + ... + (a_d) Gt. 

-d1Y 1= _diZ_(ai_di)diGt2-(2_d2)diG3_. . 

2t-2 _d2Z(ai_di)d2Gt3_(a2_d2)d2Gt...4_. . . 
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Aclding up both sides and making use of (3.3), and observin 

±'rom (3.?) that 

Gt 	- 	- 	- d Gt_ = sYt ,. 

we obtain 

(3.8) Yt_diYt_1d2Y._2 - 	- dY 	= (.i_d1)sYt_i + 

+ (a2-d2)sY.b_2 + ... + (an_dn)sYt_n  

whereupon the fundamental difference equation is. 

(3'9) Yt - Ed1+(a1-d1> Ç1 - Ed2+(a2-d2)s Y 2  - 

= 0 
which riiay alsobe written iii the form 

(3.10) yt  - rsa1+(1-s)d1 	Esa2+(1-s)d2 t2 - 

- 1a+(1-s)d1= O 

expressing the coefficients as weighted averages of the re -turns 

and depreciation exp.enses, the weights being the propensity to 

save and the propensity to consume. 

Since equation (3.10) is homo-eneousi it it knowii to 

have a solution of the form 

(3.11) 	yt= A 1 x + A2x2  + •.• + 

where the x are the roots of the characteristic poIynomial 

(3.12) g(x)x- 1+(1-s)d1  x - la2-(1+s)d2 T X- 

- 	.+ (1-s) d 1 
and where the constants A. are determined bv the initial 

conditions. 

The problem as formulated so ±'ar is incompiete, 

since no rule has yet bGen specified for the allowance for 

depreciation. Such a rüle will now be adopted .in tbe light of 

the .following theorem. 



Thoren L. 	The po1y'omia1 (3.12) has x 1+r1s as one of 

its rots - where 1+r1  is the largest real root of the poly' 

nomial (2.3) - if and oily if, for arbitrary S, 

1 =a -r1 . 

• a2  - r1lr(1-d1) 

a3  - r1  1-d1  -d2 ) 

... 

... 

d=a-r1 (1-d1 -ci2 - ... -d) 

The proof is traight forward but tedious, and will 

therefore be oxiiited. It is also readily \rerified that (3.3) 

holds, use being inade o the fact that 1 + r1  is a root of 

(2.3). The depreciatioii rule has a very natural interpretation: 

in the first year, enough depreciation is deducted to niake the 

net return a1-d1  equal to the original investrnent oí' 1 unit 

multiplied by the in1ernà1 rate of return r 1  ; since the 

original capital has been valued down to 1-d1  units, inthe 

second period the depreciation d2  will be such as to inake the 

net return a2-d2  equal to the revalued capital 1-d1  multiplied 

by the rate of return r1  ; and so ou. 

As a corollary to Theorem 1 it is readily verified 

that the polynomial (3.12)  factors as foliows: 

(3.13) g(x) = t-(i+r1s)- 1 Ex 1+(1_di )xu1_2+(1_dl_d2 )x 3+... 

...+(l-d.1-c12-...-d 1 ) 1 
Puttin.g x1  = l+rs, in order for the solution (3.11) to 

converge to the growth path A 1  (l+r1s)t  for arbitrary initial 

conditions, we require tbat the roots 12,  x3 , • I• X 	±' 

(3.14) h(x)=x 	+(l-d1)+(l-d1-d2)' 3+.. . 

bo lesa than unity in absolute value. Before taking up this• 

problein, let us analyze a simple nuinerical exaniplein which 
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A1 1= Y0  and A2 = A3  = ... = A = O. 

IV. A 1TUI1ERICAL EX&NPLE 

Let us consider a simple case of a project.charac-

teriei by a sin1e jnvestnient o± one unit ±'oliowed by two 

succesive returns: 

(4.1) (-1, a1 , a2 ) 	(-19 .?, 078). 

We veri±'y tbat the po17noinia1 (2.3) beoixies 

whence the two roots oÍ' ±' are 

1 + 	13 ; 	+ '2 = - .6. 

Tbus the rata o±' return is 300%. Accordingly we inay calculate 

the appropriate depreciation expenses from the rule given by 

Theorein.j. e 
.4 

a2 	T (1-d1 )= .78 — .3(.6) = .6 

Thus we have 

(4.2) 	(-, d19 	= (-L, .4 9  .6) 

and obviously (3.3) ia satisfied. Assui 	s a .2, we obtain 

±'roxn (3.12) and (3.13) tbe poiynomiaI 

g(x) = x2 	.6x - .636 = (x-1.06) (x+.6) 

whose roota are therefcre 

1+r1 s 1.06; 2 = d1 - 1 = -.6. 

Thus •the equilibrium rata oÍ' growth is aix pr cent, and it is 

stable sinc x2  -.6 which is lesa thau unity iii absolute 

value. 

Let us assurne the process to begin with grosa and 

net nation.1 product of 1000. The sequence 0±' events is traced 

out in the foliowing table: 
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TABLE 1 

Year o T 	2T 3 4 

P 1 000 1 140 1. 360.40 1 550. 8240 

D - 80 236.80 359. 8080 

Y 1 000 1 060 1 123.60 1 191.0160 

1 200 212 224.72 238.2032 

C 800 848 898.88 952.8128 

G 200 292 461.52. 598.0112 

- 	 00 140 156.Õ0 1 
- 	 292 204.40 227.7600 

461.52 323.0640 359.9856 

- 200 80 120.00 

292 116.80 1 	175.2000 

461.52 1 	i84.6O8O. 46.r9120 

As a corisequence o±' the investment of 200 in year O there 

are, according to (4.1), returns 0±' 140 and. 156 in the twa 

succeding years, as shown below the firet part of the•table; 

also deprection of 80 and 120 as shown in the bottom pare. 

Thus tho GNP is 1140 in .year 1, whence the 11W is Í'irst 

calculated, then net investment from the formula I. =sYt, 

then consumption from tbe formula 0 =y - 	and fina11y 

the new gross investinent from Gt = 1 +D. The ret of the 

table should be self-explanatory. 

It wilibe observedthat the rate 0±' growth of the 

nati.ona], incoin.e is 65 each year. This is a consequence 0±' 

the initial õonditions, for in order for the table to be 

consistent with the assumptions, national inconie had to be 

rowing at the ra-te 0±' six per cent during the previous 

periods; thus we could just as well compute the process back- 
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wardw as Corwards. The "initial conditions" cari be expressed 

iii tb.e foia 

+ A2x2  Y0  (1+r1s). = 

Sólving for A1  and A2  by rnultiplying the first equa-

tion by x1  and subtracting the result from the second equation, 

we obtain 

A2 (x2 -x1 )=O, 

and since 	O and x2  / O certainly x2  - 	 O so A = O, 

hence A1 = Y0 . 

This exa1p.e  niight lead one to believe that it is 

not necessary that t roots of (x) he less than unity in 

absolute value, as imag as initial cond.jtjons can be chosen 

so thai national pro.uct stays on the ,growth path. Quite apart 

trnthe difficuity,  ot achieving the latter condition inpraC-

tice, upon coi idertLon it will becoine evident that there is 

another reason fõj' xieist±ng that g(x) have roots within the 

unit circiG in o1e that the solution be econoniically mean-

ingful: the reasn is that gross investrnent - according to the 

wodel - will eveoittaljy become negative i± the prõcess is un-

stable, and obvoily this is rneaningiess. Let us therefore 

explicity state tiie condition
, 

 

(4.3) 	Gt ~ O 

Now in order to s€e 1hat (4.3)  will •generaliy be violated if 

g(x) lias roots grater than unity in absolute value, we observe 

from. (3.7) and  (3. ) 'hat 
(4.4) 	Gti_ ía2+(l-s)d21 Gt2 

..•- an+(l_s)dnGt_n= sZ. 

This differei3ce euatjon lias the sarne forni as (3.10) except 

than it is no lonE~ejp hornogeneous. •The equilibrium solution, 
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defined by 

G' = Gt = Gti = .e. =  

is 

(4.6) 	G' = ____ z  i-a .  -a2-.. 

which is neg.!tive (since with a positive rato of return nnd 

positive 'a1  , s, ho dçnominator will bc negativo). Thc 

homogencous solution, dcfincd by 

(47) 	G11 = 	- GT 

is given by 

(4. 8) G. = 	+ B 2 	+ •.. + 

Consequontly the gcncr1 solution of (4.4) is obtainod by ndding 

(4.6) r.nd (4.8) to get 

(4.9) G = 	+ B 	+ B 2xt + •.. + B xjt 
t 	112 	• 	1 	2 	fl ri 

In order that cocffícionts B 2 , B 3 , ... B be ennihilnted 

it is nccessry nnd sufficiont thnt during the initiel n peri-

ods the rc1tions 

(4.10) Gt_Z/(1_ai'2_.e._n.n)  x Gi_Z/( 1_ai_a2_..._n )  

should hold. Thcre does not soem to bc eny p'rticu1nr rcson 

for expccting this result; in pn.rticu1r it does not hold in 

the cxnmplc of Table 1. 

In the foliowing soction 1 tho-reforc tn.kc up tho 

question of thc stability of the solution 

	

yt - 	rs 

to (3.11),iC.,  tho conditiõns undcr which thc polynomia1(3.14) 

has roots 	Icss than unity in nbsolute vrlue.It is 	doar 

thn.t if this condition does not hold then somo of the roots x2 , 

.••, x of(3.1'3) will be negativo or complcx with absoluto 

valuo grcater thnn one, nnd from (4.9) it is obvious thn.t 

gross investimcnt would be evcntually bocome negn.tive, in vio1 

tion of (4,3). 
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V. STABILITY OF THI GROWTH PATH 

Consider the po1ynomial 

(5.1) h(x;n) = x+(i-d1)x"+(i-d1-d2 )x' 2+... 

.+(1-d1-d2-. 

where it is assunieci. that 

(5.2) l)1_d1'.7l_d1_d27. . .) l_d1_d2_. . .-d O. 

It is desired to prove that the roots of (5.1)  ali have ab-

solute value less than 1. Let us state fornially: 

Theorem 2.The polynoniial (5.1)  has ali its roots within the 

unit circie provided (5.2)  hols. 

The theorein is obviously true for n=l, in which 

case the single root is 

x1  = 

which is between O and -1. We note also that (5.1) ob.rjous-

ly has no positive roots, since h(x;n) is 

positive for ali positive values of x. its roots niust 

therfore be either negative or coinplex. 

The truth oÍ' theorein 2 for n = 2 is readily establish 

ed by means of direct solution by radicais. In that case the 

diseriminant is 

(5.3) D=(1-d1 ) 2-4(1-d1-d2)=(1+d1) 2-4(1-d2) 

Suppose first that D=z O, whence the roots are real. Since 

both are negative, we require that the smaller of the two 

(say x 2  ) be greater than -1, or equivalently 

2x2 = - (1_d1)_/) - 2 

which leads to the condition (1-a1)2 ) D which foliows from 

(5.3) if and oniy if d 	1 as assunied. 

Now suppose that D (O; then the two roots niay be 

written x 1 = u + vi and x 2 = u - vi, and we require that 

+ v 	 1, or equ.ivalently, 

(1a1)2+D» 
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and this reduces to 

d+2d2 3 

which certainly ±'ollows, since both c1 1  and d are between zero 

and one. 

As a prelude to taking U-p the general case, consider 

the first derivative o± the polynoinial (5.1): 

(5.4) ht(x;n) = 1+ (n_1)(l_d1 )xh1_2+ (n_2)(1_d1_d2 h1)X+... 

..+2(1-d1-d2-. . .-d 2)+(1-d1--d2-. 'n-1 

First we prova: 

Lemrna 1. For ali x 	1, h'(h;n) is positive if n is 

odd and negative i± n is even. 

Proof. 1±' n is odd, there are an odd nuniber (n) o± ternis 

on the right side 0±' (5.4), the iast of which is positive by 

assuniption (5.2). We shall show that each successive pair 0±' 

terms is positive, i.e., for i even, 

(5.5) (n-i)(1-d1-d2-. . 

d 	\fli2 	o 

Clearly n-i'p-i-1 O, and using (5.2)  we observe that the 

first coefficient o±' (5.5) is larger than the second, and that 

i1 (which, is positive since n-i--1 is even) is not srnailer 

in absolute value than 	thus (5.5) foliows. 

Now i.f n is even we ±'ollow the sarne procedure, 

considering ali pairs such as (5.5) where i is even, and 

which exhaust the right side oÍ' (5.4.).  This tinie 

will be negative since n-i-1 is odd, and will have 

absolute value greater than or equal to 	hence the 

inequality sign in (5.5) will be reversed and the lemrna foliows. 

Lemrna 2. Given assurnption (5.2), the polyn.omial (5 , 1) 

has no real roots less than -1. 

Proof. Observe that (5.1)  may be written in the recursive 

fo mi. 
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(5.6) h(x;n) = xh(x;n-)+(1-d1-d2-. . 

Suppose n is odd; then frorn (5.1)  we verify that 

(5.7) h(-1;n-1) = i-d2-d4-...-d_1 )O (n odd). 

Since n-1 is even, it fo)iows from Lexnma 1 that for ali 

h' (x;n-l) 	thërefore 

(5.8) h(x;n-l) ? 1-d2-4-...-_1>0  for x 	1. 

Consequentiy, if xn  were a root of (5.6) and xn -1 we 

would have from (5.6)  and 

(5.9a) x h(x;n-l) + l-d, -d2-. . .-õ 1-d 	O 

(5.9b) xh(x;n-i)+1-cI2-d--.. .d 1  

where (5.9b)  is obtained by multipiying (5.8) through by the 

negative quantity x 	-1. Subtracting (5.9b) from  (5.9a) 

we obtain: 

-d i_d 
 3-...-clll 	o  

in contradiction to (5.2):. Theref ore 	-1 couid not have 

been a root õf (5.1). 

Now suppose n is e.ven; then from (5.1)  we verify 

that 

(5.10) h(-l;n-i) = -d1  -cI3 - ... - d_1  ( (n even). 

Since n-i is od.d, it ±'oilows from Lernma 1 that for ali 

x 1, h' (x;n-1) 7 O, therefore 

(5.11) h(x;nl)_di_d3_..._dni 	Ofor x 	-1. 

Thus if xn  were a root of (5.6)  and 	-1 we would have 

froin. (5.6) and  (5.11) 

(5.12a) xh(x;n_1)+1_d1-d.2_. . ._d 1-d 0  

(5.12b) xh(x;n-i) 	-d1-d3-...-_1 	O 

where (5.12b) is obtained by multipiying (5.11) tbrough by 

x (-i. Subbracting (5.12b) from (5.12a) we obtain 

(5.13) 1-d2-d-...- 

which is again in •contradiction to (5.2). 
Q..D. 
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Iii order to complete the proof of Theorem 2, it is 

still necessary to show that the compiex roots of (5.1)  ali 

have modulus less than uxiity. The niethods used up to this 

point do not £ppeartobe adequate to provide a solution to this 

probiem, and a different approach wili be required. Let us 

then avail ourselves aí' conditionsestabiished. by Schur.* 

It will be convenient to define 

(5.14) C 	i1d2. . •dflj 	(i=O,1,2, . . . ,n-i) 

where we definec=1. Áccordingiy the polynomial (5.1)  may 

be written 

(5.15) 	h(x;n) = c0+c1x+c2x2+..+cx' 

where, corresponding to conditions(5.2), we have 

(5.16) 	o 	CO 4ci 	e2 	... <c = 1. 

	

Nowit was established by Schur 	that tbe poiynomial (5.15) 
has ali its roots within the unit circie (whether ar not (5.16) 

holds) ií' and only if the n determinants 

(5.17) 	=n 1 í 	1 
1 	te. 	c' . 

1 	fl,1j 

are ali positive, wherewe define the matrices 

1_c xi 	O 	O 	... 	ol f  
I Cn_1 	en 	O 	... 	ai 

n-i 	n-i+1 n-i+2 	. 	n 

II 

* J. SCHUR, Uber Potenzreihen, dje im Innern des 
Einheitskreises beschr1nkt sind l t , Journal ffir die 
reine und angewandte Nathemat±k (gegrfindet von A.L. 
Creile. 1826) Band.147 (1917), 205-232, Band 143 (1918), 
122-145. 

** Op. cit., pp. 134-5. Schur's formula is more general, 
aliowing for tho possibility thatthe coeí'í'icients c o±' 
(5.15) be complex. This possibiii1y obviousiy does 
not coneern us here 



16. 

fc0 	o 	o 	
... 

1c1 e 	o 	•.. 	of 
(5.14) c 	C 2 	e 1 	c o 	 O  i 

1 	 c 	•.. 	o L 	i 

	

1 	i-i 	-2 	01 

	

Schur also showed*  that if the matrices O.2. and. O 	commute, 

i.e., if OC4 = C 4O then 

(5.20) 4 	J 	- CC  

and it is readily verified that this conamutativity condition 

holds. Thus iii arder to establ±sh Theorein 2 it is 

sufficieit to verify from either (5.17)  or  (5.20)  that the 

determinants 4 are positive given that condition (5.16) 
holds. 

* Op. cit., pp. 216-17. Th±s formula holds for 5±Ly 
partitioned matrix satisfying the coinmutativity cond.ition. 


