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THE RELATION BETWEEN THE RATE OF RETURN ON INVESTMENT
PROJECTS AND THE RATE OF GROWTH OF THE NATIONAL PRODUCT.

John S. Chipman

I INTRODUCTION

Most post-war anélysis of economic growth has proceed
ed in terms of capital-output ratios, whether with the assumption
of fixity in thése coefficients (as in the models of Harrod'and
Domar) or without it (as in those of Solow., Swan. Meade, anad
Uzawa) = This is a fairly useful approach for analyzing growth
by means of investment in fixed capital, for it leads to the

very simple formula of Harrod (=)
(1.1) g_AY Ay 4K
Y 4k Y

which states that if there is a fixed capital-output ratio

S s

Y Tk

=

Y
K

k = K/Y (hence a marginal capital-output ratio equalvto the
average) and if there is a constant average (hence also marginal)
propensity to save s = S/Y, and finally if saving'is always
transformed into net investment (S=/XK), then the warranted

rate of growth g 1is equal to the propensity to save divided

by the capital-output ratio., For example,‘if the capital-
output ratio is k = 3.%— and the propensity to save is

s = 0,2, then the warranted rate of growth is g = .06 or six

per cent.

(*) - R F Harrod : "Towards a Dynamic Economics"
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This formula can be étated somewhat differently also.
If an investment is undertaken{ahd the reéulting capital equip-
ment is perfectly durablél(or else maintained intact by replace
ment), then the conéequence ofian investment of /4 K in year Q
is a perpetual sequence of ret\;rns_ A Y, A Y, ... in succeeding
years., The reciprocal of the capital-output ratio is therefore
simply the rate of return r = /4Y/ 4K = 1/k, or "average social
rate of return” in Domar's terminology (*®). Harrod's formula
can therefore be restated as

(1L.2) = g = rs.

In the above example, a capital-output ratio of 3 _E_
would correspond to a rate of return of 30%. It is thé
purpose of the present paper to show that formula (1.2) holds
guite generally; moreover it will be shown that there exist
certain natural cbnditiomé according to which, in conformity
to Solowﬂs'results as opposed to those of Harrod, thé growth
path will be stable, in the sense that the growth process will
tend to converge towards it,

Thié revised formulation has the adventage of making
possible a comparison of different types of investment projects,
including such projécts as investment in education which cannot
be analyzed very successfully in terms of capital—butput ratios.
The result that we obtain also gives strong support to the rate-

of-return approach in evaluating alternative investment projects.

II. THE RATE OF RETURN

I shall confine myself at first to consideration of
investment projects characterized by a single initial investment
of one unit followed by a finite sequence of positive returns

aj in the ensuing years:

(%) - Evsey Domar : Essays on Capital and Growth




(2-1) "l, 8.1, a2, o0 g an

Iater T shall consider more complicated cases, but it
will be instructive to analyze this case first. The rate of
return is defined - following Fisher (*) - as the largest inter-
est rate Ty for which the present value of this sequence of
costs and returns vénishes:

e T~ n

2.2 V (1 = - ——
( ! ) T 1+ ¥ (l+r)‘2 ¥ (1+1)"

This is equivalent to Saying,that‘the return factor l+rl is the
largest root of the polynomial

(2.3)  £(L4x)=(l+r)® - a (1+r)n R R L
One obvious reason for choosing the largest of the n roots
of this polynomial is that, sincé obviously V(1l+r) is negative
for sufficiently larze r, it follows by continuity that it is
negétive for all r greater than r, and pbsitive for all r
in the interval r2.<\r.<~rl, where lfrr2 is the next largest
real root of the polynomial f(l+r). Now since the sequence
(2.1) contains only one change of sign, it follows»by Descartes'
Rule of Signs (**) that f(1l+r) has exactly one positive root.
Now only the positive roots 1l+r generally have any econémic
meaning, for a lender cannot lose more than the total amount
lent, and the case in which the full amount lent was lost would

correspond to a zero interest factor 1l+r = O, that is a rate

(*) Irving Fisher ¥ The Theory of Interest and The Nature of
Capital and Income. Flsher sonewhat care-
lessly defined the internal rate of return
(or "rate of return over cost" in his termi
nology) as being "that interest rate" for
which the present value of the sequence of
yields would be equal to the initial cost.
The same was done by J.M. Keynes in the
General Theory when defining the marginal
efficiency of capital. The reason for
choosing the largest interest rate will be-
come obvious presently.

(**) Cf., +‘or example, Louis Weisnmer : Introduction to the

Theory of Equations. New York: The MacMillan Co., 1938,
pp. 88-9
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' of interest of =100%. This remains true of the real rate of
interest during a period df ihflation, sincé if 4 4ig The
market rate of interest aﬁé p the rate of inflation, then
one dollar invested now wiil become 1l+i dollars in the follow=-
ing year, but this quantité will have suffered a fall in pur-

chasing power of 100p% and%ansequently be worth only
1+ 1
1+0D

in constant dollars. As the rate of inflation approaches

1+ 1 = zfl +1«0Dp
infinity, 1 + » approaches zero and r aproaches the minimumn
possible value of <1, Thus for all conceivable real rates of
interest r, the prbjéct rep#esented by (2.1) will be profitable
whenevér the interest rate i$ less than the rate of return, and
unprofitable otherWise. |

The above discussioﬁ has bearing on thé‘question of
how an efficient allocation Qf saving can be achieved by means
of a capital market, provide&'thecriterion of evaluating a
| project by the rate of return can be justified on independent
grounds. It is the latter question which is “he object of

interest in the discussion to follow.

IIT. THE GROWTH PROCESS

I shall assume that the gross national product in year
t, Pt’ can be divided_into two parts: an autoncmous part 2
-which is assumed to be constant, and an induced part which
consists of the returns from previous gross investments Gt-i-
cerried out i years earlier, i =1, 2, ..., n. The returns
a; of (2.1) will be interpreted as being net of any main-
tenance expenses, bub excluding depreciation on fixed capital
that must be replaced. 'A3suming that a; is the constant

proportion of the return in any year t +to the gross investment
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Gt-i i years previously, the gross national product in year
will be
Similarly, let us assume than the depreciation of a gross
capital investment if one unit is spread out during the sub=-
sequent n years of life of the capital according to the
sequence

(502) "'l, dl’ d2’ LI Y dn
where

(3.3) di + d2 + eee + dn = 1,

Then in any year t the depreciation expense Dt of that year
will be a snapshot consisting of the depreciation expenses
di G, , , assumed to be a constant proportion of the previous

b~
gross investments:

Net national product in year +t is therefore given by

Now let net investment I be a fixed proportion g
of the current net national product Yy, where s is the fixed
average propensity to save: '
(306) It = Sft.
Gross investment is then

(3.7) Gu=I, + D,= 8T, 44,6, 1 + dply 5+ oov + 4 G

From (3.5) we may replace +t successively by t~l, t=2yeee,ytn
and multiply through respectively by 'dl’ ~d2,<;.., —dn, |
to obtain the equations -

=4y ¥y _g= =d4yZ-(ay~dy)¢1 Gy o=(8p=dp)d3 Cpuz=s - o={ay=2 )3y Gyne
=dpTy o= =dpZ-(ay=dy)dxGy_z=(ay=ay)dnGy y=e - o= (ay=dn)doGy p o

* 4.9

-~
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'dnzt —n*~d,%-(a;-9;)a Gt -nrl (az p)0Gy pp=r - (a _dPDQnGt-Zn
Adding up both sides and maklng use of (3.3), and observing
from (3.7) that |

-4 G = sY

Gy =dq G n - ten H *.

t ~d1 Gpoy 7 G G < oee
we obtain ' } | '
(3.8) Yymay¥y =apTp 5 = een = &Yy = (By=dy)sTyy +

+ (ay=dy)sYy 5+ oov + (8,-d )Ty

whereupon the'fundamental difference equation is.
(3.9) Y, - [Tay+(ag-dy¥s] ¥, 1 - Cagt(ap=dg)s] Ty 5 = ...
co=Ca+(ay~da )s] =0~
which may also be written in the form o
(3.10) Y, -_l__-_'_sal+(i-s)c11 T 4= T:_S&2+(l-s)d21Yt__2'- T
’ . - L@a'+(l~s)d J=0 '
expressing the coefficients as weighted averages of the returns
and deprecigtlon expenses, the weights being the propensity to
save and the propensity to cbnsume. |
| | Since equation (3.10) is homogeneous; it it kmown to
have a solution of the form v

t G t
(3.11) T, = Alxl ¥ A2x2 + asg + Anxn

where the Xy are the roots of the characteristic polynomial

(3.12) g(x)=xP-[Baj+(1-e)a, T x - [Bay-(1+s)ayd x*72-
. - [:san_* (1-s) dn 1
and where the constants Ai are determined by the initial
conditions.,

The probleﬁ as formulated so far is incompléte,
since no rule has yet been.specifiéd for the allowance for
depreciation. Such a rule will now be adépted.in the light of
the following theorem. |
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Theoreg le The polj#bmial (%3.12) has x = ;+rls as one of
its roots - where 1+r1fis the largest real root of the poly»

nomial (2.3) - if and-dﬁly if, for arbitrary s,

Gy ® a5 = rltgl"dl)
dz = az - T -'i;(l-dl -d,)

Ay = 8y =7y (1=dy = dp = «on = dp )

The proof is gtraight forward but tedious, and will
therefore be omitted. ét is also readily verified that (3.3)
holds, use being made o% the fact that 1 + ry is a root of
(2.3). The depreciatioé rule has a very natural interpretation:
in the first year,,enouéh deprecilation is deducted to make the
net return ai—dl equai'to the original investment of 1 unit
multiplied by the internal rate of return r; ; since the
original capital has been valued down to 1-dy units, in‘the
secdnd period the depreciation ds will be such as to make the
net return a2—d2 equal to the revalued capitgl 1-d; multiplied
by the rate of return Ty s and so on. |

As a corollary to Theorem 1 1% is readily verified
~ that the'polynomial,(B.IE) factors as follows:
(3.13) g(x) = I§:~(l+ris)] e (1-a )% 20 (1-ap - )%™ 1.

oot (lmdymdpmen=d 1) ]

Putting X, = 1+r.s, in order for the solution {3.11) to

1
converge to the growth path Al (l+rls)t for arbitrary initial
conditions, we require that the roots oy Xzy ooy Xy of

| i see=dpoy)
be less than unity in absolute value. Before taking up this.

problem, let us analyze a simple numerical example in which



A1=Y08ndA2=A3=...=An=O.

IV, A NUMERICAL EXAMPLE ' )

Let us consider s simple case of a project charac-
‘teriged by a single investment of one unit followed by two
successive returns:

(4.1) (-1, a5, a,) = (-1, .7, .78).
We verify that the polynomial (2.3) becomes
£(1+1)=(141) 2. 2(1+x)~. 78=(14r-1.3) (1+1+.5),

whence the two robts.of £ are

14+1) =1,5; 1415,==~.6. -
Thus the rate of return is 30%. Accordingly we may calculate
the appropriate depréciation'axpenées from thetfule given by
Theorem 1 ¢

d1 =a; -y = ,7 « 53 = .4 |
dp = a5 = Ty (l-dl)= .78 = .3(.6) = .6

Thus we have | | '
(%2 (=1, 4, ) = (=1, .4, .6)
and obviously (3.3) is satisfied. Assuming & » .2, we obtain
from (3.12) and (3.13) the polynomial

g(x) = %° - J46x - +636 = (x&l.o6) (x+.6)
whose roots are therefcre

X = 1+rls = 1;06; Xs = 4y - 1= ~-.6.
Thus the equilibrium rate of growth is six per cent, and it is
stable since Xy = ~.6 which is less thaﬁ unity in absolute -
value. | |

Let us assume the process to begin with gross and
net nationsl product of 1000. The sequeﬁce of events is traced

out in the following table:
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TABLE 1
Year 0 1 -2 - 1 5 4
P 1 000 1140 |1 566.40 1 550. 8240
D - 0 80 | 236.30 359.8080 |
Y 1000 | 1060 l1123.60 |1 191.0160
" 200 212 | 224.72 238, 2032
C 800 848 '898.88 _ 952.8128
G 200 202 | 461.52 595.0112
- 200 . 140 156.00
- 292 | 204,40 227.7600 |
- 461.52 323.0640 | 359.9856
- 200 80 | 120.00
- 292 | 116.80 175. 2000 |
) - 461.52 184.6080 | 276.9120

‘As a consequence of the investment of EOOViﬁ year 0O there
are, according to (4.1),lreturns of 140 and 156 in the two |
succeding years, as shown below the first part of the table;
>also deprection of 80 and 120 as Shown in the bottom part.
Thus the GNP is 1140 in year 1, whence  the NNP is first
calculated, then net investment from the formula I, = sy,
then consumption from the formula C, = ¥, - I, and finglly
the new gross investment from Gy = I, + D.. The rest of fﬁe
table should be self-explanatory. o
It will be observed that the rate of growth of the
national income is 6% each year. This is a canseqﬁéhCe‘of |
the initial cOnditioné, for in order for the téble to be
consistent with the assumptions, national income had to be
growing at the rate of six per cent during the previous

periods; thus we could just as well compute the process back-
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warde as forwards. The "initial conditions" can be expressed
in the form
| Al + A2 = "O
Alxl + A2x2 = Y, (1+r s)., = Yox, |

| Solv1ng for Ay and A, by multiplying the flrst equa-
tion by X and subtracting the result from the second equation,
we obtain

Ay ( xé - %X ) = 0,

~ and since X > 0 anéd X ( O certainly X, = Xy < 0 so A, = 0,
hence Al = YO'

This exanple might lead one to believe that it is
not necessary thatvthe roots of g(x) be less than unity ih
absolute value, as long as initial conditions can be chosen
so that national profuct stays on the growth path. Quite apart
fromthe difficulty of achieving the latter condition in prac-
tice, upon consideration it will become evident that thefe is
another reason for $nsisting that g(x) have roots within the
unit circls in ordef that the solution be economically mean=
ingful: the reas¢n is that gross investment - according-to the
rodel - will eventWally become negative if the process is un-
stable, and obviougly this is meaningless. Let us therefore
explicity state tlme condition

(4.3) - G,GZ 0
Now in order to see thaﬁ (4.3) will generally be violated if
g(x) has roots greater than unity in absolute value, we 6bserve
from (3.7) and (3.8) that
(4.4) GtoTEaI+(1-s)diTAGt l—r§a2+(l-s)dé:]Gf~2 S i
cen— I:? +(1~ s)d 1Gy_ = sZ.
This dlfference equatlon has the same form as (5 10) except

then it is no longer homogeneous. -The equlllbrlum solution,
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defined by

' = Gy % Gy = e Oy
is
Z
(14’06) G' = - a - s
1- - P eve an

which is negative (since with o positive rutc of return and
positive @, , &, the dcnominator will be negutive)., The
homogeneous solution, dcfined by

(L.7)  G%" =0 -G
is given by .

e t
(L,8) G lel + B2x

+ + .+th‘

** no n

Nt

Consequently the gencrnl solution of (L4,4) is obtained by ndding
(4.6) end (L.8) to get
(k.9) G :

- t t t
B 1-al~n2-...-nn + lel + B X2 e ® ann

2
In order that cocfficients B2, B3, cee Bn T
it is nccessary and sufficient that during the initial n peri-
ods the relations

(4,10) Gt—Z/(l-al-az-...-a )= x Gt_l-Z/(l-al-az-...—n )

Il n

should hold., There does not scem to bc any particular rcason
for expecting this result; in particular it does not hold in
the example of Table 1,

In the foilowing section I thereforc toke up the
question of the stability of the solution
s) %y

Yt = (1l+r

1 0

to (3,11),iye., the conditions under which the polynomial(3,14)
has roots all dess then unity in absolute value,It is clear
that if this condition does not hold then some of the roots Xoy
X3y eves X of(3.l§) will be negotive or complex with cbsolute
value greater than one, ond from (4,9) it is obvious that
gross investiment would be eventunlly become negative, in violm

tion of (L.3).
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V. STABILITY OF THE GROWTH PATH

Consider the polynomial v
(5.1). h(x;n) = xn+(l-dl)xn"l-t-(l—dl-de)xn'z-a- b
| oo ot (ledy=domee=d, )
where it is assumed that
(5.2) Hl-dyl-dy=dy. . H1l=dy=dy=...=d > O,
It is desired to prove that the roots of (5.1) all have ab=-
solute value less than 1. Let us state formally: .
Theorem 2.The polynomial (5.1) has all its roots Within the
unit circle provided (5.2) holds.
The theorem is obviously true for n=1, in which
case the singlejroot is |
%y = =(1-dy)
which is between O and -l. We note also that (5.1) obvious=-
1y has no positive roots, since h(x;n) is |
positive for all positive values ofb X+ Its roots must
therefore be either negative or complex;
| The truth of theorem 2 for n = 2 is readily establish
ed by means of direct solution by radicals. Ih that case the
discriminant is )
(5.3) D=(1=dy)P-4(1d)~d,)=(1+dy ) 3-4(1~dy)
Suppose first that D=} 0, whence the roots are real. Since
both are negative, we require that the smaller of the two
(say xg) be greater than I-l, or equivalently
2x, = - (1-d1)—N¢Tr") -2
which leads to the condition (1—d1)2'> D which follows from
(5.3) if and only if ds (:1 as assumed.
Now suppose that D <.O; then the two TOOtsS may be
written X= U+ vi and Xo = U - vi, and we require that
u2 + v2 <~1, or equivalently,
(1-apP@eD {u
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and this reduces to
‘ di + 2d, 4‘5
which certainly follows, since both dq and d2 are between zero
and one.
As a prelude to taking up the general case, consider
the first derivative of the polynomial (5.1):
(5;4) h'(x;n)=nxp'1+(n-l)(l—dl)xn 2+(n—2)(1—dl-a2)x T
e oo #2(1-dy-ds- ..;-cln 2)x#(1=d ~ds=eeo=dy )
First we prove: ‘
Lemma 1. For all x £-~ 1, h'(h;n) is positive if n is
odd and negative if n is even.
| Proof. If n is odd, there are an odd number (n) of terms
on the right side of (5.4), the last of which is positive by
assumption (5.2). We shall show that each successive pair of
terms is positive, i.e., for i even,
(5.5) (n=i)(l=dq=dom...=d, )37 l+(n-1-l)(l ~d ==

ceemdg=ds 1) n"1'2> 0.

i+l
Clearly n-l}n-l—f\ 0, and using (5.2) we observe that the
first coefficient of (5.5) is larger than the second, and that
2-i-1 (which is positive since n-i-1 is even) is not smaller
in absolute value than x*~ i- 2, thus (5.5) follows.

Now if n is even we follow the same procedure,
considering all pairs such as (5.5) where i is even, and
which exhaust the right side of (5.4). This time =2 +7%
will be negative since n-i-1 is odd, and will have
absolute value greater than or équal to ¥ 172, hence the
inequality sign in (5.5) will be reversed and the lemma follows.

Leﬁma 2. Given assumption (5.2), the polynomial (5.1)
has no real roots less than -1.
Proof. Observe that (5.1) may be written in the recursive

form.
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(5.6) h(x;n) = xh(x;n—l)+(l-dl-d2—...-dn)
Suppose n is odd; then ffom (5.1) we verify that
Since n-1 1is even, it foilows from Lemma 1 that for all
x é_-l, h' (x;n=1) <§O; therefore
 (5:8) B(xin-1) € l-dg-dy=...=dy_g ) O for x {-1.
Consequently, if X, Were a root of (5.6) and Xy £~~l we
- would have from (5.6) and (5.8) .
where (5.9b) is obbained by multiplying (5.8) through by the
negative quantity x, é\-l. Subtracting (5.9b) from (5.9a)
we obtain: _
-dl—dE-. ° o"'dn ___40 |
in contradiction to (5.2). Therefore - £~—1 could not have
been a root of (5.1).
Now suppose n is éven; then from (5.1) we verify
that
/
.(5.10) h(-1;n-1) = ~d1v—d3 - .= 4, 7 NO (n even).
Since n-1l is odd, it follows from Lemma 1 +that for all
X <.l h‘(Y"n-l)‘>~O therefore
(5.11) h(zx; n-l)‘~-ol—d~ .= <.O for x £.~1.
Thus if xh were a root of (5. 6) and xn<.-1 we would have
from (5.6) and (5.11) '
(5-120) xnalxgin-l)  -dp-ds- cemd_y 2 0
where (5.12b) is obtained by multllelng (5.11) through by
W <; 1. Subtractlng (5 l2b) from (5.12a) we obtain

which is again in contradiction to (5.2).
' Q.E.D.
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In order to compiete,the proof of Theorem 2, it is
still necessary to show that the complex roots of (5.1) all
have modulus less than unity.v The methods used up to this
point do not &appeartobe adequate to provide a solution to this
problem, and a differenﬁ,approach will be required. Let us
then avail ourselves of cenditions established by Schur.*

, It will be convenient to define

(5.14) cg= i-dy=dpmeee=dy s (i=0,1,2,...,n-1)
where we define ¢, =1 Accordingly the polynomial (5.1) nay
be written |

(5.15) h(x}n) = co+clx+c2x2+...+onxn
where, corresponding to conditions (5.2), we have

(5.16) 0] < s <01 <32 < (cn = 1.
Now it was established by Schur ** that the polynomial (5.15)
has all its roots within the uhit circie (whether cor hot (5.16)
‘holds) if and only if the n deberminants
Icn\,i {

eae
lc. c' .|
| Tt

(5.17) Ai \ (i = 0,1,2,.. ./,n-l)

i ,1

are all positive, where we define the matrices

cn 0 0 ces .0
Cp-1 Cp 0 . 5§ 0
®h-2  ®n-1 ®n 0
:.. @ 0 0 ® O & © & 0O & & O O % O O S P O VS OSSO a0 s 0 O
c_ . c_ . e . &
n-i n-i+1 n-i+2 o ) n

n . .
B J. SCHUR, " Uber Potenzreihen, die im Innern des
+ - Einheitskreises beschrinkt sind ", Journal flir die

reine und angewandte Mathematik (gegriindet von A.L.
§§§1%251826) Band 147 (1917), 205-232, Band 148 (1918),

** Op. cit., pp. 134=5. Schur's formula is more general,
allowing for the possibility that the coefficients c. of
(5.15) be complex. This possibility obviously does
not concern us here :
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and
CO O ' O e o0 O
cl co 0 ess O
(5.14) ¢, = iy ) o eee O
i “7 . Sz 0 %

Schur also showed* thaf if the matrices Ci and Cn,i commute,

i.e., if C.C_ . = C_ .C,, then
LeBa, 2L Uy Nyl nyi’i

(5.20) 4 = ’ Cp,i Ohii = 010 ! (i = 0,1,2...,n-1)

and it is readily verified that this commutativity condition
holds. Thus in crder to establish Theorem 2 it is
sufficient to verify from either (5.17) or (5.20) that the

determinants ZE are positive given that condition (5.16)
~holds. |

* Op. cit., pp. 216-17. This formula holds for any
partitioned matrix satisfying the commutativity condition.



