Publicação:
Machine learning simulates agent-based model towards optimal policy : a surrogate model for public policy assessment

Carregando...
Imagem de Miniatura

Paginação

Primeira página

Última página

item.page.date.journal

Data da Série

Data do evento

Data

Data de defesa

Data

Edição

Idioma

eng

Cobertura espacial

Brasil

Cobertura temporal

País

BR

organization.page.location.country

Tipo de evento

Grau Acadêmico

Fonte original

ISBN

ISSN

DOI

dARK

item.page.project.ID

item.page.project.productID

Detentor dos direitos autorais

Instituto de Pesquisa Econômica Aplicada (Ipea)

Acesso à informação

Acesso Aberto

Termos de uso

Reproduction of this text and the data contained within is allowed as long as the source is cited. Reproduction for commercial purposes is prohibited.

Titulo alternativo

Discussion Paper 273 : Machine learning simulates agent-based model towards optimal policy : a surrogate model for public policy assessment

item.page.organization.alternative

Variações no nome completo

Orientador(a)

Editor(a)

Organizador(a)

Coordenador(a)

item.page.organization.manager

Outras autorias

Palestrante/Mediador(a)/Debatedor(a)

Coodenador do Projeto

Resumo

As políticas públicas não são intrinsecamente positivas ou negativas. As políticas fornecem níveis variados de efeitos em diferentes destinatários. Metodologicamente, a modelagem computacional possibilita a aplicação de uma combinação de múltiplas influências em dados empíricos, permitindo assim uma resposta heterogêneos à política. Usamos um algoritmo de aprendizado de máquina de floresta aleatória para emular um algoritmo baseado em agente modelo (ABM) e avaliar políticas concorrentes em 46 Regiões Metropolitanas (RMs) do Brasil. Ao fazer isso, usamos parâmetros de entrada e indicadores de saída de 11.076 simulações reais execuções e um milhão de execuções emuladas. Como resultado, obtemos o desempenho ótimo (e dentro do ideal) de cada região sobre as políticas. Ótimo é definido como uma combinação de produção e indicadores de desigualdade para o conjunto completo das RMs. Os resultados sugerem que as RMs já possuem estruturas incorporadas que favorecem os resultados ótimos ou ideais, mas também ilustram quais política é mais benéfica para cada lugar. Além de fornecer resultados de políticas específicas das RM, o uso de aprendizado de máquina para simular um ABM reduz a carga computacional, enquanto permitindo uma variação muito maior entre os parâmetros do modelo. A coerência dos resultados dentro o contexto e maior incerteza – vis-à-vis aqueles do ABM original – sugere um adicional teste de robustez do modelo. Ao mesmo tempo, o exercício indica quais parâmetros devem os formuladores de políticas intervêm, a fim de trabalhar em direção a instrumentos precisos de políticas ótimas.

Resumo traduzido

Public policies are not intrinsically positive or negative. Rather, policies provide varying levels of effects across different recipients. Methodologically, computational modeling enables the application of a combination of multiple influences on empirical data, thus allowing for heterogeneous response to policies. We use a random forest machine learning algorithm to emulate an agentbased model (ABM) and evaluate competing policies across 46 Metropolitan Regions (MRs) in Brazil. In doing so, we use input parameters and output indicators of 11,076 actual simulation runs and one million emulated runs. As a result, we obtain the optimal (and non-optimal) performance of each region over the policies. Optimum is defined as a combination of production and inequality indicators for the full ensemble of MRs. Results suggest that MRs already have embedded structures that favor optimal or non-optimal results, but they also illustrate which policy is more beneficial to each place. In addition to providing MR-specific policies’ results, the use of machine learning to simulate an ABM reduces the computational burden, whereas allowing for a much larger variation among model parameters. The coherence of results within the context of larger uncertainty – vis-à-vis those of the original ABM – suggests an additional test of robustness of the model. At the same time the exercise indicates which parameters should policymakers intervene, in order to work towards precise policy optimal instruments.

organization.page.description

Sobre o pesquisador

Endereço de Email

ORCID

Lattes

Google Scholar ID

Web of Science ResearcherID

Scopus ID

Informações sobre o projeto

project.page.project.productdescription

Vocabulário Controlado do Ipea

Palavras-chave traduzidas

JEL

Citação

Aviso

Notas

Série / coleção

Versão preliminar

item.page.relation.isreplacedby

Faz parte da série

Publicações relacionadas / semelhantes

organization.page.relation.references

Livros

Publicações

Faz parte da série

Fascículos

Eventos relacionados

Volumes

Projetos de Pesquisa

Unidades Organizacionais

REPOSITÓRIO DO CONHECIMENTO DO IPEA
Redes sociais