Publicação:
Machine learning : evidências ou alquimia em políticas públicas no Brasil?

Carregando...
Imagem de Miniatura

Paginação

Primeira página

Última página

Data de publicação

Data da Série

Data do evento

Data

Data de defesa

Data

Edição

Idioma

por

Cobertura espacial

Brasil

Cobertura temporal

País

BR

organization.page.location.country

Tipo de evento

Grau Acadêmico

Fonte original

ISBN

ISSN

DOI

dARK

item.page.project.ID

item.page.project.productID

Detentor dos direitos autorais

Instituto de Pesquisa Econômica Aplicada (Ipea)

Acesso à informação

Acesso Aberto

Termos de uso

É permitida a reprodução deste texto e dos dados nele contidos, desde que citada a fonte. Reproduções para fins comerciais são proibidas.

Titulo alternativo

item.page.organization.alternative

Variações no nome completo

Orientador(a)

Editor(a)

Organizador(a)

Coordenador(a)

item.page.organization.manager

Outras autorias

Palestrante/Mediador(a)/Debatedor(a)

Coodenador do Projeto

Resumo

O uso de algoritmos de machine learning se torna crescentemente presente no ciclo das políticas públicas. Operando grandes bases de dados, estes algoritmos produzem novas formas de racionalização do processo decisório, do desenho, da implementação e da avaliação dessas políticas, otimizando diversas facetas do seu processo mais amplo. Um dos argumentos em que se assenta o uso desses algoritmos na condução das políticas é o fato de eles facilitarem o trabalho com evidências, uma vez que operam grandes bases de dados. Neste artigo nós argumentamos que a crescente aplicação de machine learning no ciclo das políticas públicas não é condição suficiente para ampliar práticas baseadas em evidências. Dada a natureza e os atributos das dinâmicas de desenho de algoritmos de machine learning, defendemos que eles não produzem evidências, mas figurações do mundo baseadas em dados. Assim, traçamos uma conclusão sobre que tipos de capacidades são requeridas para o trabalho com inteligência artificial e seus desdobramentos na gestão pública.

Resumo traduzido

organization.page.description

Sobre o pesquisador

Endereço de Email

ORCID

Lattes

Google Scholar ID

Web of Science ResearcherID

Scopus ID

Informações sobre o projeto

project.page.project.productdescription

Vocabulário Controlado do Ipea

Palavras-chave traduzidas

JEL

Citação

FILGUEIRAS, Fernando. Machine learning : evidências ou alquimia em políticas públicas no Brasil? Boletim de Análise Político-Institucional : governança e cultura do uso de evidências no Brasil : experiências, desafios e temas emergentes. Rio de Janeiro: Ipea ; Brasília, DF: Cepal, n. 37, p. 141-152, mar. 2024. DOI: http://dx.doi.org/10.38116/bapi37art12

Aviso

Notas

Série / coleção

Versão preliminar

Versão final dessa publicação

Faz parte da série

Publicações relacionadas / semelhantes

organization.page.relation.references

Livros

Publicações

Faz parte da série

Eventos relacionados

Volumes

Projetos de Pesquisa

Unidades Organizacionais

REPOSITÓRIO DO CONHECIMENTO DO IPEA
Redes sociais