Publicação:
Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency

Carregando...
Imagem de Miniatura

Paginação

Primeira página

Última página

item.page.date.journal

Data da Série

Data do evento

Data

Data de defesa

Data

Edição

Idioma

eng

Cobertura espacial

Municípios da região Centro-Oeste, Brasil

Cobertura temporal

País

BR

organization.page.location.country

Tipo de evento

Grau Acadêmico

Fonte original

ISBN

ISSN

DOI

dARK

item.page.project.ID

item.page.project.productID

Detentor dos direitos autorais

Instituto de Pesquisa Econômica Aplicada (Ipea)

Acesso à informação

Acesso Aberto

Termos de uso

É permitida a reprodução deste texto e dos dados nele contidos, desde que citada a fonte. Reproduções para fins comerciais são proibidas.

Titulo alternativo

Texto para Discussão (TD) 1220: Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency, Modelos espaciais de fronteira estocástica: representando determinantes locais não-observados de ineficiência

item.page.organization.alternative

Variações no nome completo

Orientador(a)

Editor(a)

Organizador(a)

Coordenador(a)

item.page.organization.manager

Outras autorias

Palestrante/Mediador(a)/Debatedor(a)

Coodenador do Projeto

Resumo

Neste texto, analisamos a produtividade de estabelecimentos agrícolas localizados em 370 municípios da região Centro-Oeste do Brasil. Propomos um modelo de fronteira estocástica de produção com estrutura espacial latente que representa os determinantes não-observados da ineficiência da produtividade da agropecuária. Esse componente espacial condiciona a distribuição da ineficiência. Usamos o paradigma bayesiano para estimar os modelos propostos. Foram exploradas duas distribuições diferentes para este termo, a normal truncada e a exponencial, e utilizamos duas especificações para a variável latente, suposta independente entre os municípios, ou dependente dos municípios vizinhos segundo um modelo auto-regressivo espacial. O procedimento de inferência considera explicitamente todas as incertezas quando incluímos o termo espacial. Como a distribuição a posteriori não tem uma expressão analítica, utilizamos técnicas estocásticas da simulação para obter amostras dessa distribuição. Foram adotados dois critérios que avaliam o desempenho do modelo, e os dois indicaram que o componente espacial latente incorpora informação adicional a um modelo que já contém informação local observada.

Resumo traduzido

In this paper, we analyze the productivity of farms across n = 370 municipalities located in the Center-West region of Brazil. We propose a stochastic frontier model with a latent spatial structure to account for possible unknown geographical variation of the outputs. This spatial component is included in the one-sided disturbance term. We explore two different distributions for this term, the exponential and the truncated normal. We use the Bayesian paradigm to fit the proposed models. We also compare between an independent normal prior and a conditional autoregressive prior for these spatial effects. The inference procedure takes explicit account of the uncertainty when considering these spatial effects. As the resultant posterior distribution does not have a closed form, we make use of stochastic simulation techniques to obtain samples from it. Two different model comparison criteria provide support for the importance of including these latent spatial effects, even after considering covariates at the municipal level.

organization.page.description

Sobre o pesquisador

Endereço de Email

ORCID

Lattes

Google Scholar ID

Web of Science ResearcherID

Scopus ID

Informações sobre o projeto

project.page.project.productdescription

Vocabulário Controlado do Ipea

Palavras-chave traduzidas

JEL

Citação

Aviso

Notas

Série / coleção

Versão preliminar

item.page.relation.isreplacedby

Faz parte da série

Publicações relacionadas / semelhantes

organization.page.relation.references

Livros

Publicações

Faz parte da série

Fascículos

Eventos relacionados

Volumes

Projetos de Pesquisa

Unidades Organizacionais

REPOSITÓRIO DO CONHECIMENTO DO IPEA
Redes sociais