Publicação:
Previsão de homicídios no Brasil : proposta de variável antecedente

Carregando...
Imagem de Miniatura

Paginação

Primeira página

Última página

Data de publicação

Data da Série

Data do evento

Data

Data de defesa

Data

Edição

Idioma

por

Cobertura espacial

Brasil

Cobertura temporal

1999-2017

País

BR

organization.page.location.country

Tipo de evento

Grau Acadêmico

Fonte original

ISBN

ISSN

DOI

dARK

item.page.project.ID

item.page.project.productID

Detentor dos direitos autorais

Instituto de Pesquisa Econômica Aplicada (Ipea)

Acesso à informação

Acesso Aberto

Termos de uso

É permitida a reprodução deste texto e dos dados nele contidos, desde que citada a fonte. Reproduções para fins comerciais são proibidas.

Titulo alternativo

Texto para Discussão (TD) 2611 : Previsão de homicídios no Brasil : proposta de variável antecedente

item.page.organization.alternative

Variações no nome completo

Orientador(a)

Editor(a)

Organizador(a)

Coordenador(a)

item.page.organization.manager

Outras autorias

Palestrante/Mediador(a)/Debatedor(a)

Coodenador do Projeto

Resumo

Neste estudo, investigamos a capacidade de variáveis antecedentes, entre elas internações por agressão, na previsão do número de homicídios no Brasil. O objetivo principal desta pesquisa é suprimir a lacuna referente à defasagem de informações na divulgação sobre homicídios no país, permitindo assim análises conjunturais atualizadas. Para tanto, por intermédio do esquema rolling window e da abordagem model confidence set (MCS), investigamos se modelos de variáveis antecedentes apresentam desempenho preditivo superior ao conjunto de modelos univariados. Ao aplicar a abordagem MCS, considerando diferentes estatísticas de avaliação, funções de perda e janelas de estimação, encontramos fortes evidências da capacidade das variáveis antecedentes utilizadas fornecerem conteúdo informacional adicional na previsão da dinâmica criminal brasileira, com modelos de variáveis antecedentes sistematicamente superando modelos univariados. Na média, os melhores modelos de variáveis antecedentes apresentam melhorias relativas ao benchmark random walk, de 60% em termos de raiz do erro quadrado médio (RMSE), erro absoluto médio (MAE) e desvio absoluto médio da média (MAD).

Resumo traduzido

In this article we investigate the capacity of antecedent variables, among them admissions for aggression, in the prediction of the number of homicides in Brazil. The main objective is to eliminate a gap regarding the large time lag in the dissemination of information about these deaths in the country, allowing updated conjuncture analyzes. For this, through a “rolling window” scheme and “Model Confidence Set” approach, we investigate whether multivariate models with leading variables show forecast performance superior to a set of univariate models. In applying the MCS approach, considering different evaluation statistics, loss functions and estimation windows, we find strong evidence of the ability of the leading variables used to provide additional information content in the prediction of the Brazilian criminal dynamics, with models of leading variables systematically surpassing univariate models, especially in extended periods of forecasting. In general, improvements related to the benchmark Random walk model, in terms of RMSE, MAE and MAD, are of the order of 60%.

organization.page.description

Sobre o pesquisador

Endereço de Email

ORCID

Lattes

Google Scholar ID

Web of Science ResearcherID

Scopus ID

Informações sobre o projeto

project.page.project.productdescription

Vocabulário Controlado do Ipea

Palavras-chave traduzidas

JEL

Citação

Aviso

Notas

Série / coleção

Versão preliminar

Versão final dessa publicação

Faz parte da série

Publicações relacionadas / semelhantes

organization.page.relation.references

Livros

Publicações

Faz parte da série

Fascículos

Eventos relacionados

Volumes

Projetos de Pesquisa

Unidades Organizacionais

REPOSITÓRIO DO CONHECIMENTO DO IPEA
Redes sociais